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Heat and Mass Transfer 
Prof. U. N. Gaitonde 

Department of Mechanical Engineering 
Indian Institute of Technology, Bombay 

Lecture No. 16 
Review of Fluid Mechanics -1 

 

Hello, my name is Gaitonde and it is now my task to continue with the lectures on heat 

and mass transfer. Professor Sukhatme, the first instructor in these series of lectures and 

whose lectures you have been watching and listening to all these days, will be back after 

this mini-series of my lectures. So far we have studied conduction and radiation; it is now 

time for us to begin the study of convection - both forced convection as well as free 

convection. Before we study convection, it is necessary for us to review fluid mechanics.  

  

(Refer Slide Time: 01:50)  

 
 

This is because convection is nothing but heat transfer in the presence of fluid flow and 

because of this fluid flow affects the process of heat transfer. Also in any heat transfer 

situation, we will have to determine if there is a fluid flow, the pressure drop of the fluid 

as it flows through a duct or a passage or the drag on a surface or an immerged body if 

that body is immersed in a fluid and is looksing or gaining heat from the fluid. All of you 
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are expected to have undergone a course or have studied the subject of fluid mechanics; 

however, in the next few lectures, we will go through a quick review of fluid mechanics.  
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If you want to study fluid mechanics on your own, a reasonably nice text book is by Fox 

and McDonald. There are many other equivalent text books available – one is by Streeter 

and Wiley; we have another by Youvan and there are a number of others.   
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In the very first lecture professor Sukhatme would have indicated these 2 text books or 

reference books for this particular series of lectures and in these 2 books or any other 

book on heat transfer, you will find a chapter reviewing the principles of fluid mechanics 

or at least a few sections undertaking such a review and you may wish to go through that 

particular portion of these books.  

 

What are we supposed to be familiar with? We are not going to undertake a full fresh 

study of fluid mechanics but we are expected to be familiar with - before we undertake a 

study of convection - the following topics.   
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We must have some clear idea of the governing equations of fluid flow, then we must be 

able to determine the pressure drop when a fluid flows in a duct - these are the situations 

of internal flow. Then in situations of external flow where a body is immersed in a fluid, 

we should be able to determine the drag force when fluid flows around such a body and 

of course fluid mechanics does not go without the terminology of laminar and turbulent 

flows. So, we must appreciate the difference between laminar and turbulent flows 

because the characteristics of these 2 type of flows are different and hence the difference 
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will manifest itself in convective heat transfer also. Let us begin our study with the 

governing equations of fluid flow.  

 

(Refer Slide Time: 05:31)  

 
 

In conduction, the major governing equation was the equation of conservation of mass. 

There was no flow hence the equation of conservation of mass and equation of 

conservation of momentum was more or less trivially satisfied and we had to study 

convection essentially using the equation of conservation of energy whereas for fluid 

flow the governing equations represent entities related to flow. We have to have an 

equation representing conservation of mass and another equation or set of equations 

representing conservation of momentum. Conservation of momentum is nothing but 

Newton’s second law of motion applied to an open system through which fluid flows in 

and fluid flows out.  

 

Now, just the way we couldn’t solve problems of conduction purely by using the 

governing equation of conservation of energy, we needed a subsidiary equation which 

was the Fourier’s law of heat conduction, similarly these 2 equations - conservation of 

mass and conservation of momentum  - by themselves are not sufficient to solve fluid 

flow problems. We also need a subsidiary set of equations which are known as Stokes 
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relations between stress and rate of strain in a fluid and when we use Stokes relations, it 

automatically means that we are restricting ourselves to the domain of Newtonian fluids. 

When we apply conservation of mass and conservation of momentum along with the 

Stokes relations to the flow of fluid, the resulting differential equations are known as the 

Navier Stokes equations.   
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These equations consist of an equation for conservation of mass - this equation is usually 

called the continuity equation. We also have a set of equations for conservation of each 

component of momentum - these equations are known as the momentum equations. In a 

one dimensional flow, there will be a single component of momentum which will be 

significant and we will have one momentum equation. In the general 3 dimensional flow 

case, there will be 3 components of momentum and we will have to write down 

conservation equations for each of these 3 components of momentum. So in the general 3 

dimensional case, we will have one equation - continuity equation - representing 

conservation of mass and 3 momentum equations each representing conservation of 

momentum in the x direction, in the y direction and the z direction represented. We will 

quickly look at some simple version of the Navier Stokes equations.  
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We will assume that apart from the fluid being Newtonian, that is, Stokes relations are 

assumed to be applicable. We will look at situations which are steady state, constant 

property, incompressible, laminar and two dimensional. Two dimensional means any 

property, any velocity component and pressure will vary only in say x and y direction or r 

and theta direction or r and z direction. Steady state means nothing changes with time; 

constant property means properties like density, viscosity, etcetera are not functions of 

pressure and temperature; incompressible means that there is no link between density and 

pressure - even if pressure varies density does not change with pressure.  

 

Let us first look at a situation in the Cartesian coordinates system where let us say we 

have - this is the x direction and this is the y direction. At any point there will be velocity 

component Vx in the x direction and Vy in the y direction; if you want to show the 

resultant velocity, the resultant velocity V will be a vector. The continuity equation 

representing conservation of mass in this simplified case looks as follows. Partial 

derivative of Vx with respect to x plus partial derivative of Vy with respect to y is 0.  
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Since we are looking at a two dimensional case, we will have 2 momentum equations - 

one representing conservation of momentum in the x direction  and another representing 

conservation of momentum in the y direction. These are the 2 equation - the x momentum 

conservation equation and the y momentum conservation equation. The left hand side 

represents the net force acting on an element of fluid and the right hand side represents 

the net outflow of momentum from that small element.   

 

Notice that nothing changes with time so a term containing say dVx by dt does not enter 

in these equations. On the left hand side, the first term represents the force because of 

variation of pressure in the x direction, the second term whatever is in square brackets 

multiplied by the viscosity mu represent the net viscous force on a small element of fluid. 

In the right hand side, row into these derivative terms in square brackets represents the 

net outflow of momentum from that small element of fluid. The equation in the y 

direction is very similar; you will notice that the variation of pressure in the x direction 

occurs in the x direction momentum equation and the variation of pressure with respect to 

y occurs in the y direction momentum equation. On the right hand side you will notice 

that here, you have derivatives of Vx with respect to x and y and here you have 

derivatives of Vy with respect to x and y.   
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The Navier Stokes equations can also be written down in many other coordinate systems 

but they go on becoming more and more complex as we go to cylindrical, polar and 

spherical polar coordinate systems.  
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Here is simplified situation in cylindrical polar coordinate where we assume that the 

velocity in the theta direction is 0; that means there is no swirl. If this is the z direction, 

this is the r direction, then we are assuming that in the theta direction there is no V theta 

so there is no swirl. Also we assume that Vr and Vz - the velocity component in the r 

direction Vr and the velocity component in the z direction Vz - are not functions of theta; 

that means we are assuming an asymmetric situation. The simplified form of Navier 

Stokes equations for this asymmetric situation without swirl and with all the other 

assumptions like steady state, incompressible, laminar, etcetera, the continuity equation 

reduces to this form.   
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The momentum equations look a bit more complex but the structure remains the same. 

We have the r direction momentum equation and we have the z direction momentum 

equation; in each of these equations, we have the momentum outflow terms in the r 

direction and in the z direction. We have the right hand side which represents the force on 

that fluid element we have the pressure term in the r direction pressure term in the z 

direction and these are the viscous terms in the r direction and the viscous terms in the z 

direction.   

 

So, you will notice that even in simple two dimensional laminar flow situation, we have 3 

equations - a momentum equation, sorry, a continuity equation and 2 momentum 

equations to be solved for the 3 unknowns Vr, V theta and p for the cylindrical polar 

coordinates and Vx, Vy  and p for the Cartesian coordinate systems.   
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These equations are not easy to solve; solutions can be obtained only for some very 

simple situations. For example one solution which can be obtained is for laminar fully 

developed flow in a circular pipe and because solutions cannot be obtained for a large 

number of situations of practical importance, we generally depend on experimental data. 

This data is collected, correlated in terms of dimensionless variables and we use those 

resulting correlations. If you are interested in the solution of Navier Stokes equation, the 

solution procedures you will have to refer to some book on basic fluid mechanics and 

fluid dynamics. We now move on to the next topic which is internal flow  
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The internal flow represents flow through a duct of some cross section. A simplest 

situation would be a duct representing a tube or a pipe or a channel through which a fluid 

flows with some mean velocity say V bar. There is a flow of mass and hence we will 

have properties for this fluid say density, viscosity; sometimes we may even use the 

kinematic viscosity which is nothing but the dynamic viscosity divided by the density. 

Let the length of the tube be L, let the pressure at the inlet be pi, let that at the exit be pe. 

Because of the viscous action of the fluid, the exit pressure will be lower than the inlet 

pressure; there will be a pressure drop represented by delta p which is nothing but pi 

minus pe.  

 

The duct may have some cross section, the cross section maybe uniform or the cross 

section could be circular - a very common case. It could be square or rectangular; it could 

even be some odd shape like an oval. The fluid mechanic problem here is to determine 

the pressure drop as a function of velocity, length, properties of the fluid and the 

geometry of the duct - maybe the diameter here or the width and breadth here or, if it is 

an elliptical flow, the major axis and the minor axis.  
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At the gross level we will be interested in the pressure drop but because of the viscous 

action there will be a shear force acting on the wall. We may call it tau wall; in fact we 

can relate the shear force on the wall to the pressure drop through some simple geometric 

relation. In such a case of internal flow, we define a term called the friction factor.  
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Friction factor relates the pressure drop to the other properties of flow and velocity and 

also to geometry. The friction factor is defined either in terms of the pressure gradient - it 

is the partial derivative of pressure with respect to the direction of flow. The negative 

sign indicates that we expect the pressure to drop in the direction of flow so dp by dz will 

be a negative number; the friction factor with this negative sign becomes a positive 

number. This is the area of cross section, this is the perimeter of a cross section and V bar 

is the mean velocity of flow. So row V bar square by 2 is what is sometimes called the 

velocity head.   

 

The friction factor can also be shown to be equal to the shear stress on the wall tau w 

divided by row V bar squared by 2. In any flow situation - internal flow situation - we 

will almost always be interested in knowing what is friction factor and we should 
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remember that the friction factor is a dimensionless number. There is something about the 

friction factor which all of us should know.  
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If the flow is laminar and fully developed, that means there are no entrance effects; then 

the friction factor is a function only of Reynolds number - the function maybe different 

for different geometry but there is no other effect. Similarly for turbulent fully developed 

flow in a duct, the friction factor is a function of Reynolds number and e by D which is 

the wall roughness parameter sometimes known as the relative roughness in text books 

on fluid mechanics. Let us look at fully developed flow in a circular pipe. 
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This is one of those rare situations where an analytical solution of the Navier Stokes 

equations can be obtained. The analytical solution indicates that the pressure drop over a 

length L is related to the length L, the diameter D, the mean velocity V bar and the 

dynamic viscosity mu by this simple equation. And if we use the definition of the friction 

factor, we will notice that it is related only to the Reynolds number by this simple relation 

- 16 divided by the Reynolds number ReD; subscript D indicates that the Reynolds 

number is based on the diameter.  

 

For turbulent flow we have to depend on experimental data because the Navier Stokes 

equations cannot be solved exactly for turbulent flow.   
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In fact, flow through a circular duct is of so much important, importance in industry that 

large amount of data as been obtained and it is put together in a famous chart; all of us 

should know the Moody diagram. The Moody diagram is a log graph - on the y axis we 

have the friction factor and on the x axis we have the Reynolds number. The Moody 

diagram is a relation between friction factor and Reynolds number with the roughness 

parameter as the third parameter for flow through circular ducts.  

 

Notice that when the flow is laminar, Reynolds number less than 2000, the laminar 

relation F equal to 16 by ReD applies; that is represented by this straight line here. 

Beyond 2000 roughly till about 4000 or 5000, Reynolds number is the zone of transition 

and beyond that we have the zone of turbulent flow where the friction factor will be a 

function of Reynolds number as well as the roughness parameter. And you will notice 

that for a given roughness parameter, as Reynolds number increases the friction factor 

decreases whereas for a given Reynolds number, as the roughness parameter increases 

the friction factor increases.  

 

In many situations particularly situations pertaining to heat transfer, we have smooth 

tubes with roughness parameters almost 0 triple 0 5 or 4 0s 5 and so on. And for such 
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tubes over some small ranges correlations are available between a Reynolds number of 

about 4000 to approximately 30000. We have this correlation, beyond that we have this 

correlation. Notice that these two correlation are for smooth tubes hence the friction 

factor is only a function of Reynolds number; the roughness parameter does not appear in 

these equations. Even this data for almost smooth tubes to rough tubes in turbulent flow 

has been correlated by Chen.  
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And we have a reasonably complete correlation here where the friction factor is related to 

e by D, the roughness parameter, Reynolds number and another intermediate term A2 

where A2 also you will notice is a function of Reynolds number as well as the roughness 

parameter. So overall we have a relation between friction factor, roughness parameter and 

Reynolds number and this equation is valid over a reasonably wide range of roughness 

parameters as well as Reynolds number.   

 

Now we are in a position to solve a simple problem so that we rekindle our ideas of fluid 

flow through to ducts. The problem which we are going to look at is as follows.  
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We have a straight duct with a circular cross section of length 3 meters; the cross section 

is circular and the diameter is 1 centimeter. Water flows through it and it is assumed that 

the temperature of the water is uniform at 10 degrees C; the flow rate is such that the 

mean velocity is .2 meters per second. We have to determine the pressure drop over this 

length. We will assume fully developed flow, the process will be, we will determine 

properties at 10 degrees C, then we will determine the Reynolds number. Looking at the 

Reynolds number, we will decide whether the flow is laminar or turbulent. Depending on 

the decision, we will use a suitable equation or a correlation to determine the friction 

factor and from the friction factor and the mean velocity and density we will then 

determine the pressure drop.   

 

First let us look at the properties - at 10 degrees C for water, we can read of the following 

properties from any property table. Density is 979.7 kg per meter cube. We need either 

than dynamic viscosity and kinematic viscosity; here I have used the kinematic viscosity 

which is 1.306 into 10 raise to minus 6 meter square per second. Let us first calculate the 

Reynolds number. The Reynolds number is based on the diameter in terms of kinematic 

viscosity; it will be V bar D by the kinematic viscosity.  
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Substituting .2 meters per second, diameter of .01 meter divided by 1.306 in to 10 raise to 

minus 6 - this gives us 1531.  Now this means that the Reynolds number based on the 

diameter is less than 2000 and this implies laminar flow. Now since the flow is laminar 

and since we have assumed fully developed flow we can use this simple relation f equal 

16 by ReD. To determine the friction factor, substitution of Re D equal to 1531 gives us a 

friction factor which is 0.0104.  

  

So first, we have determined the Reynolds number, then we have determined that the 

flow is laminar, then we have determined the friction factor and the pressure drop is now 

calculated as delta p equal to 4 f L by D in to row V bar square by 2. We have calculated 

the friction factor, we know the length 3 meters, diameter 1 centimeter, density has been 

read off, V bar is .2 meters per second. If you substitute these numbers, you will get the 

answer to be 251 Pascal.  

 

Now let us modify this problem here. We had water at 10 degrees C; now the question is 

what happens if temperature of water rises to 80 degrees C. Instead of cold water, almost 

chilled water, real hot water at 80 degrees C is now made to flow through pipe. We will 

assume that the velocity remains the same. What will change are essentially properties 

and this is what will happen.   
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We have now water at 80 degrees C; the density reduces slightly - 971.8 kg per meter 

cube - but the kinematic viscosity reduces reasonably significantly, almost by a factor of 

3. We will have to recalculate the Reynolds number. Mean velocity is .2 meters per 

second diameter is .01 meter divided by the kinematic viscosity at 80 degrees C and this 

turns out to be 5472. This is definitely larger than 2000; it is even greater then 5 000 and 

this implies that the flow is turbulent. Now if we assume that the flow is fully developed 

and that the tube is smooth, then we are somewhere here on the Moody diagram and we 

will use this correlation which is applicable for smooth tubes in this zone of Reynolds 

number. And using that correlation which is f equal to 0.079 ReD raised to minus .25, 

substituting for this new value of Reynolds number we will get our friction factor as 

0.00918 and the pressure drop will now be 4 f into L by D into row V bar squared by 2.   

 

Compared to the first case, we have the density which is slightly different and the friction 

factor which also lower and the resulting value of pressure drop is 214 Pascal. So what 

has happened is because of the rise of temperature from 10 degrees to 80 degrees C and 

mainly because of the reduction in the kinematic viscosity. The Reynolds number has 

increased the flow, has become turbulent; the friction factor has decreased slightly and 

the pressure drop which was earlier 251 Pascal has reduced to 214 Pascal. I will leave it 

to you as an exercise to determine what happens if the velocity - average velocity - 

instead of being .2 meters per second increases and say becomes .8 meters per second 

either at 10 degrees C or at 80 degrees C.  

 

We have now looked at circular ducts. In practice, in a large number of heat transfer 

situations, we use ducts with non-circular cross sections.  
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We may have a rectangle so long that we may consider it to be a pair of parallel plates or 

we may have rectangle of sides 2 a by 2 b or we may have a zone of flow which is 

bounded by 2 circles and annular zone of flow. So it is possible that this is a tube inside 

another tube and this is the zone of, annular zone of flow; inner tube will have radius ri, 

the outer tube will have an radius ro. This is a common situation in double pipe heat 

exchangers and this is an approximation of a situation which is reasonably common in car 

radiators.  
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Of course, for such ducts circular tube relations are not directly applicable and 

experimental data shows that in case of such ducts, one can use the relations for circular 

tubes and hence one can use the information available in the Moody diagram. If we use 

the equivalent diameter in place of the diameter which occurs in the Reynolds number, 

the equivalent diameter De sometimes also known as the hydraulic diameter or the 

hydraulic mean diameter is defined by a simple relation. It is 4 times the cross sectional 

area of flow divided by the wetted perimeter.   

 

Notice that if you substitute for the cross sectional area of flow and the wetted perimeter 

the relations for a circular tube, you will get the equivalent diameter equal to the actual 

diameter of that circular tube. But for noncircular cross sections, you will have equivalent 

diameter based on the geometry. For example if you consider this to be 2 long parallel 

plates, the equivalent diameter here will turn out be 4 b. If you have a rectangular channel 

of sides 2 a by 2 b, area of this channel will be 4 ab; the perimeter will be 4 a plus 4 b and 

hence in this case the equivalent diameter will be 4 ab divided by a plus b. And in this 

particular case, the area is that bounded by the outer circle minus that bounded by the 

inner circle whereas the wetted perimeter is the circumference of the outer circle plus the 
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circumference of the inner circle and if you substitute these relations you will get this to 

be equivalent diameter to be twice the difference in the radii of the 2 circles.  

 

So in this particular case, in case of noncircular geometries, all that we do is after having 

determined the mean flow velocity based on the actual area of flow and in the calculation 

of the Reynolds number and in the calculation of pressure drop where we need that L by 

D, we use the equivalent diameter and the equivalent diameter is based on the cross 

sectional area of flow and the wetted perimeter. Once you determine the equivalent 

diameter or the hydraulic diameter De, calculate the Reynolds number, determine 

whether the flow is laminar or turbulent and use the Moody diagram for determination of 

the friction factor. So that brings us to the end of this lecture. We will continue with a 

review of fluid mechanics in the next lecture. 


