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In the previous lecture, we calculated or we rather we derived an expression for the heat 

exchange by radiation between 2 infinite parallel plates which are maintained at different 

temperatures T1 and T2. We got the expression for the heat exchange rate and we today 

we want to do a similar derivation but we would like to calculate the heat exchanged by 

radiation now in the annular space between 2 infinitely long concentric tubes. So once 

again, it is a two surface enclosure - the outer surface of the inner tube is one surface the 

inner surface of the outer tube is the other surface. These two surface make up a two 

surface enclosure.  

 

(Refer Slide Time: 01:46) 

 
 

Looking at the sketch, the outer surface of the inner tube is this one here and it is 

maintained at a temperature T1, it is maintained at temperature T1. The inner surface of 

the outer tube is this surface and it is maintained at a temperature T2. The outer surface of 

the inner tube has a radius r1 and the inner surface of the outer tube has a radius r2 and the 
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space, the annular space is the radial distance between r2 and r1 - that is the annular space 

in which the heat exchange by radiation takes place.  

 

Let us assume as in the previous case that the surfaces are diffused gray; let us assume 

that the surfaces are diffused gray and that the emissivities are epsilon 1 and epsilon 2 as 

in the previous case. Since Kirchoff's law will hold true, it follows that the absorbitivities 

are also epsilon 1 and epsilon 2. Also we will assume that the surfaces are opaque, 

therefore the reflectivities are1 minus epsilon 1 and 1 minus epsilon 2 respectively; as in 

the previous case we will make the same assumption. So the only difference really is that 

we have a situation now in which we have, we have changed the geometry of the 

situation now - that is the only change really that we have got. 

 

So with this geometry, we would like to know what is q1 and what is q2 - q1 is the rate at 

which heat is supplied let us say per unit length at say, supplied per unit length from the 

surface1 or per meter length. q2 the rate at which heat is supplied for meter length at the 

surface 2 if T1 is let us say greater than T2, it follows that q1 will be a positive number, 

q2 will be a negative number and q1 will be equal to minus q2 as in the previous case. If 

T1 is less than T2, the situation will be reversed.  

 

Now again we are going to consider radiation emitted by one surface and which goes 

back and forth in the annular space and is successively absorbed and reflected at the 

surface which it encounters - that is how we are going to proceed. Once we get terms for 

these quantities, we will like in the previous generate a geometric progression and sum it 

up. So let us proceed, let me draw a sketch of the 2 tubes and the annular space in an end 

elevation so that I can show the rays going back and forth. 
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Let us say that this is, let us say this is the radius r1 and this is the radius r2 and this is the 

annular space in which the heat exchange by radiation is taking place between the 

surface1 and the surface 2. Consider now the radiation emitted from some element on the 

surface1; let us say I have some element on the surface1 and let us say we consider 

radiation emitted from it. The emissive power of surface 1 is e1 so let us say symbolically 

that e1 is what is emitted; e1 so many watts per meter squared is what is emitted from this 

surface. e1 will be given by epsilon 1 sigma T1 to the power of 4 by the Stefan 

Boltzmann law.  

 

Now this arrow is symbolic; mind you radiation from this elementary surface is really 

going off in all directions so the arrow is simply symbolic showing radiation is being 

emitted from here and ultimately all of it has to reach the surface 2. Mind you this is the 

case in which the surface 2 completely surrounds the surface 1 therefore F 1 to 2 is going 

to be 1. All the radiation from any element on 1 has to reach 2 so F1 to 2 is 1 and also the 

reciprocal relation tells us that F 2 to 1 is going to be A1 A2 which is nothing but r1 upon 

r2 because we have 2 infinitely long concentric tubes. So this is a situation in which F 1 

to 2 is equal to 1 and F 2 to 1 is equal to A1 by A2 which is nothing but r1 upon r2  rather 

2 pi r1 L upon 2 pi r2 L , the 2 pi L will cancel out so I will get r1 upon r2.  



 4 

So, now let us go back; let us consider the radiation emitted from this element. e1 watts 

per meter squared are emitted when all this radiation emitted in all directions of a 

hemisphere reaches the surface 2, the amount that is absorbed here will be epsilon 2 e1; 

so many watts per meter square will be absorbed and a certain amount will be reflected 

which will again be reflected in all directions like this. Out of this reflected amount, 

reflected amount will be1 minus epsilon 2 into e1; out of this reflected amount a certain 

will go back to the surface 1 and a certain amount will go back straight to the surface 2 

because the F 2 to 1 is A1 upon A2. So what is the amount that goes directly to the 

surface 2 itself from 2? Well the amount that goes to surface 2 would directly, will be the 

amount that goes to surface 2 directly.  

 

Let me draw it in this, this point here rather than that arrow, just let me show it here. The 

amount that goes to surface 2 directly will be 1 minus, this quantity is going to be 1 

minus A1 upon A2 multiplied by 1 minus epsilon 2 e1. That is the quantity that is going 

to be because the amount that is absorbed is epsilon to e1, so the amount that is reflected 

is 1 minus epsilon 2 e1 and out of that, the amount that goes directly to surface to will be 

1 minus A1 by A2 into 1 minus epsilon 2 e1.  

 

The rest goes back to surface 1 and what is the quantity going to surface 1? Well, let me 

show it by an arrow; the quantity that is going to surface 1 is the difference. So that is 

going to be, let me show that here the quantity going to the surface 1 itself will be A1 

upon A2 into 1 minus epsilon 2 into e1 - that is the quantity that goes to the surface 1. Out 

of that, the quantity that is going to be absorbed in the surface 1 will be, the quantities 

that is absorbed in the surface 1 will be that multiplied by epsilon 1 and the quantity that 

is reflected back to surface 2 will be the difference.  

 

So, it will be 1 minus epsilon 1 multiplied by A1 upon A2 multiplied by 1 minus epsilon 

2 into e1 and out of that the quantity that is absorbed will be this quantity which I have 

put down here multiplied by epsilon 2. So if I multiplied this quantity which I have got 

here I will call this as 1. I will, I will use this as Roman 1 and I call this is Roman 2. What 

is, here Roman 1 is the quantity that is coming to the surface 2 and after deflection from 
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surface 1 and this expression is the one that is coming directly to surface 2. If I multiply 

both of these by epsilon 2 that is the absorptivity of surface 2, I will get this quantity 

which is finally absorbed at the surface 2.  

 

So, I am going to get the arrow, the big arrow showing the amount absorbed will be 

epsilon 2 in the bracket 1 plus 2, that is what going to be the quantity. And if I work that 

out, if I work out that expression, I am going to get epsilon 2; if I work out that 

expression I am going to get epsilon 2 into 1 minus epsilon 1 A1 upon A2 multiplied by 1 

minus epsilon 2 multiplied by e1. Let me just check again 1 minus epsilon 2 e1 that is 

here and if I multiply this I will get 1 minus epsilon 1 epsilon 2 and the whole thing is to 

be multiplied by epsilon 2. Am I right? Let me just, let me check that, that is okay.  

 

So, this is the expression I will get for the quantity that will come back to surface 2 and 

absorbed by the surface. Now this is the first set of absorptions and reflections; I can go 

on doing this and generate terms like this one.  

 

(Refer Slide Time: 14:36) 

 
 

Therefore I can say having done this, I can say the following - I can say rate at which, 

rate at which radiation emitted by inner tube 1 and absorbed and absorbed by outer tube 2 
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is equal to, going to take them term by term now, I take A1 e1 outside because that is the 

common. I will take A1 e1 outside A1 is the area of the surface 1 and e1 is the emissive 

power, so I am going to take that outside. I will get the terms inside to be - the first term 

is epsilon 2, the next term will be 1 minus epsilon 1 A1 upon A2 multiplied by 1 minus 

epsilon 2 multiplied of course by epsilon 2 plus the next term is going to be, which we 

haven’t derived but you can do on your own, 1 minus epsilon 1 A1 by A2 the whole 

squared 1 minus epsilon 2 the whole squared multiplied by epsilon 2 plus so on; that is 

what we are going to get. So we derive the first 2 terms mind you; the first term was A1 

e1 epsilon 2.  

 

Let me go back to the sketch, the first terms which we derived was this one, A1 we didn’t 

write down, that was the area of the inner tube into epsilon to e1 that was the first term 

and the second terms we derived was this one for, what is absorbed by the surface 2? 

That is epsilon 2 into 1 minus epsilon 1 A1 A2 into 1 minus epsilon 2 e1; that was the 

second term. This is now very easy to sum up, we can take epsilon 2 also outside. So we 

get A1 e1 epsilon 2 and inside the bracket we will get a geometric progression and if you 

sum up that geometric progression you will get 1 upon, it is a very simple geometric 

progression, 1 upon 1 minus 1 upon 1 minus 1 minus epsilon 1 A1 by A2 into 1 minus 

epsilon 2.  
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That is the summation of the geometric progression, the infinite series that we have and if 

we clean up this expression a little, we will get - this is further equal to A1 e1 epsilon 2 

divided by, divided by epsilon 1 A1 by A2 plus epsilon 2 minus epsilon 1 epsilon 2 A1 

over A2 - that is what we will get. This you can you now do one your own - the summing 

up of the geometrical progression; that is the expression we will get. It is the rate at which 

radiation emitted by the inner tube is absorbed by the outer tube.  

 

Now, in exactly the same wave do the reverse calculation; calculate the rate at which 

radiation emitted by the outer tube is absorbed by the inner tube. Similarly I am not going 

to derive this now; I am saying similarly rate at which, rate at which radiation emitted by 

the outer tube, by the outer tube 2 is absorbed by the inner tube 1, by the inner tube 1 

equals; now this derivation I am not doing. It will come out to be A1 epsilon 1 e2 divided 

by, if one does the derivation you will get the following and I would like you to do this 

on your own as an exercise, multiplied by epsilon 1 A1 over A2 plus epsilon 2 minus 

epsilon 1 epsilon 2 A1 over A2 - that is what you will get. 

 

Therefore, now the q1 to 2 that is the heat exchanged between the two surfaces 1 and 2, 

the net heat exchange between the two surfaces 1 and 2 is given by, therefore q1 to 2 is 
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equal to A1 - the difference of the 2. So we will say A1 into bracket epsilon 2 E1 minus 

epsilon 1 E 2, the difference of the 2 terms divided by epsilon 1 A1 upon A2 plus epsilon 

2 minus epsilon 1 epsilon 2 A1 upon A 2 - that is the net heat exchanged rate between the 

two surfaces. 

 

We are proceeding really exactly in the same way that we did for infinite parallel plates 

with the difference that the shape factor in one direction is 1, F 1 to 2 is 1, F 2 to 1 is A1 

upon A 2.  

 

(Refer Slide Time: 22:33) 

 
 

That is the only difference that we have in this case therefore further if now we write for 

E1, I write epsilon 1 sigma into T1 to the power of 4 and for E2 I write epsilon 2 sigma 

into T2 to the power of 4. Then I will get q1 to 2 is equal to sigma A1 T1 to the power 4 

minus T2 to the power 4 divided by 1 by epsilon 1 plus A1 by A2 A plus A1 upon A2 into 

1 upon epsilon 2 minus 1. Now only two surfaces are involved; it is only a two surface 

enclosure so obviously q12 is also q1 and it is also minus q2. 

 

We have argued this before so it is the same argument again. Two surfaces are involved; 

the heat exchanged rate between the two surfaces is also the rate at which heat is supplied 
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as each of those surfaces. So q12 is equal to q1 is equal to minus q2 therefore q1 and q2, 

q1 equal to minus q2 is nothing but the expression which we have that is namely sigma 

into A1 T1 to the power 4 minus T2 to the power 4 divided by, divided by 1 upon epsilon 

1 plus A1 upon A2 1 upon epsilon 2 minus 1 and this is a rather well known expression 

which I would like you to note. This particular expression that we have derived is a rather 

well known expression; as I will show you in a movement it has wider applicability just 

for the situation for which we have derived it and therefore it is rather an important 

expression - q1 equal to minus q2 is equal to sigma A1 to T1 to the power 4 minus T2 the 

power 4 the whole thing divided by 1 by epsilon 1 plus A1 upon A2 into 1 by epsilon 2 

minus 1. 

 

Now, let us consider a different situation; let us say the, considering the annular space 

between 2 tubes 2 long tubes concentric tubes, let us say we consider the annular space 

between concentric spheres, radius of the inner sphere being of radius r1 and the outer 

sphere being of radius r2. Let us consider the situation we have 2 concentric spheres and 

the inner sphere of surface 1 is at a temperature T1, the outer sphere - the hollow space of 

the outer sphere - is at a temperature T2, the hollow of a surface I mean and the heat 

exchange by radiation is taking place in the annular space between the 2 spheres. We 

want to find out the rate of that heat exchange. In this case - the case of the 2 sphere - you 

will agree with me F 1 to 2 is again 1, F 1 to 2 is 1 and F 2 to 1 is A1 upon A 2 where A1 

upon A2 is nothing but R1 square upon R2 square. 
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In the previous case, in the cylinders case A1 upon A2 was R1 upon R2. Now A1 upon A2 

will be R1 square by R2 square. Now if I proceed to derive an expression for the heat 

exchange by the, between the two surfaces and the, derive an expression for q1 or q2, you 

will agree with me that since F 1 to 2 is 1 and F 2 to 1 is A1 upon A2, I am going to get 

exactly the same expression that we derived earlier.  

 

So, for the case of concentric spheres, if I want to derive an expression for the radiant 

heat exchange in the annular space between concentric spheres, the expression will still 

be for concentric spheres also. The expression will still be q1 equal to minus q2 equal to 

sigma A1 into T1 to the power 4 minus T2 to the power 4 divided by 1 by epsilon 1 plus 

A1 by A2 into 1 by epsilon 2 minus 1. So this expression is also valid for calculating the 

radiant heat exchange in the annular space between 2 concentric spheres 1 and 2. 

Why? For that matter, why do the spheres have to be concentric or why do the 2 

cylindrical tubes have to be concentric? They could even be eccentric because even when 

they are eccentric F 1 to 2 is going to be 1 and F 2 to 1 is going to be A1 upon A2. So 

even if the 2 tubes are eccentric or even if the 2 spheres are eccentric the relation that you 

have derived is still valid. The only thing to remember is if they are tubes, A1 upon A2 
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will be R1 upon R2, if they are spheres A1 upon A2 will be R1 squared upon R2 squared; 

that is the only difference. 

 

Now let us go further, let us carry our argument still further. Why do we in fact  need to 

think only of cylinders and spheres?  

 

(Refer Slide Time: 28:13) 

 
 

Suppose I have general situation - a two surfaces enclosure is F 1 to 2 equal to 1 and F 2 

to 1 equal to A1 upon A2. I have, any general situation like this could be two dimensional 

or it could be three dimensional. So long as I satisfy this condition F 1 to 2 equal to 1 and 

F 2 to 1 equal to A1 upon A 2, then the expression which we have derived is valid. Now 

look at the examples like this for instance. Here is a semi circular tube, a semi circular 

space let us say. The semi circular part we will call as surface 2, the flat part will call as 

surface 1 and let us say surface 1 is at a temperature T1, the surface 2 is at a temperature 

T2; this could be a long long semi circular space like this. 

 

Now in this case F1 to 2 is 1 because all the radiation from 1, from the flat surface 1 has 

to go to 2 and F 2 to 1 is going to be A1 upon A2 therefore the expression we just derived 

is valid. Let us go to this case, here is a case where we have let us say 2 square or 2 
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rectangular tubes - long square or rectangular tubes 1 inside the other. Here also A1 F 1 to 

2 is 1, F 2 to 1 is A1 upon A2 and the relation which we derived earlier is true. This need 

not be 2 dimensional, could be a 3dimensional situation; for instance A1 could be a cube 

inside this room and A2 could be the walls, the 6 walls of this room, that case also F 1 to 

2 is 1, F 2 to 1 is equal to A1 upon A2. 

 

So, for a variety of situations, although we derived this expression which I derived a 

movement ago for the annular space between 2 cylindrical tubes, although we derived it 

for that specific situation, keep in mind that this relation is valid whenever we have a two 

dimensional or a three dimensional situation involved in such a manner that F 1 to 2 is 1 

and F 2 to 1 is A1 upon A2. In that case, this expression holds true.  

 

So, this expression has very wide validity and that is why I said it is a rather useful 

expression and we will need it for solving many types of problems. So let us now in fact 

look at some problems but before I that do that let me take a special case of this situation.  

 

(Refer Slide Time: 31:05) 

 
 

So we have got this expression. Now, q1 is equal to sigma A1 T1 to the power 4 1 upon 

epsilon 1 plus A1 by A2 1 by epsilon 2 minus 1, this is our general expression valid 
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whenever F 1 to 2 is 1 and F 2 to 1 is A1 upon A2. Let us take a special case of this; let us 

say A1, the area A1 that is the surface 1 is very small compared to 2; that is A1 by A2 

tends to 0. In that case, the denominator will simplify because A1 by A2 will become 

equal to 0. So the expression will simplify to the form q1 is equal to sigma epsilon 1 A1 

T1 to the power 4 minus T2 the power 4. So we will get this simpler expression if A1 by 

A2 tends to 0. Keep that in mind. 

 

So, now we have derived a general expression for a variety of geometries though we 

started off only the, with the case of the annular space between 2 tubes; we extended it to 

the annular space between 2 spheres. We said the spheres could be eccentric, the tubes 

could be eccentric and then we said in fact it could be applied to any situation where one 

object completely surrounds another so that one surface completely surrounds another; so 

that F 1 to 2 is 1 and F 2 to 1 is A1 upon A2 and then finally we took up the special case 

inside; if A1 by A2 tends to 0 we get the simpler expression. 

 

Now we are going to solve a problem or two. The problem we are going to take up first is 

the following one which occurs in practice quite often. Let us say I have a furnace on the 

left hand side here.  

 

(Refer Slide Time: 32:48) 
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We would like to calculate through a small opening in this furnace, this is an opening in 

the furnace, what is the heat being lost by radiation through that small opening? So out 

here, the shaded thing is the wall of a furnace; on the left hand side is the furnace like this 

and it is at a temperature of 1000 degrees centigrade. There is a small opening and we 

would like to know how much heat is being lost by radiation through the small opening in 

this furnace wall.  

 

Let us say all the surrounding surfaces to outside the furnace r at a temperature of 300 

Kelvin and the furnace wall itself on the outside is at 300 Kelvin. Let us say that the 

furnace wall is at 300 Kelvin here and of course all the surroundings are at 100, 300 

Kelvin and this is my opening though which radiation is being, heat is being lost by 

radiation. I would like to know how much is being lost because inside here the 

temperature is 1273Kelvin that is 1000 degrees centigrade. It is a furnace inside here at 

1000 degrees centigrade, so how much energy radiant energy is being lost through this 

opening?  

 

Now, we are going to solve the problem as follows – we are going to idealize the 

situation by making a two surface enclosure. So we are going to say close this opening 

with this dotted line that I am showing here, close this opening with this dotted line 

which I am showing here and close this opening with some imaginary surface and let us 

call that as surface 1. And let us say all the others, that is outside of the furnace wall that 

is here and the surroundings everything else is at, is at 300 Kelvin; so let us call that as 

surface 2. 

 

So, let us say this is my enclosure as I am showing it here; this is my enclosure in which 

the opening is surface 1, the small opening is surface 1 and everything else that it sees 

once the radiation comes out is surface 2. So obviously this is a situation in which A1 

upon A2 is going to be tending to 0; it is a situation in which F 1 to 2 is going to be 1, it is 

a situation in which F 2 to 1 is going to be A1 upon A2.  
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Therefore for this particular problem, for this particular problem which we have idealized 

as follows, for this problem we can say q1 is equal to, the expression which I just had 

showed you a moment ago - sigma A1 epsilon 1 T1 to the power 4 minus T2 to the power 

4 - that is the rate at which heat must be supplied at the surface1 if surface1 is to be at 

1000 degree centigrade that is 1273 Kelvin and surface is to be at 300 Kelvin. So that is 

equal to 5.670 into 10 to the minus 8. That is the Stefan Boltzmann constant multiplied 

by the opening, we are told to take the opening to be to be 2 centimeters in diameter. I 

will put that down - opening 2 centimeter diameter.  

 

So, A1 will be pi into .01 the whole square pi r squared - that is the area multiplied by the 

emissivity of the surface; that is we can treat it to be a black surface. So we will say it is 1 

and T1 to the power 4 would be1273 to the power 4 minus 300 to the power 4. So we 

imagine that the opening is plugged with an imaginary surface and that imaginary surface 

is at 1273 Kelvin and is a black surface. Now that is a good assumption because the 

opening inside is really looks like a black surface from outside; so that is a good 

assumption. So, we get 1273 to the power 4 minus 300 to the power 4 and that comes out 

to be equal to 46 .6 watts. So in this case, this is the rate at which heat is being lost by 

radiation from this opening in the, in a furnace wall.  
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Now let us do one more problem; problem we want to do next is the following. I am 

going to read it out slowly so that you can take it down; the problem is the following. 

 

(Refer Slide Time: 38:31) 

 
 

A thin metal spherical container of diameter 32 centimeters is filled completely with 

liquid nitrogen. I repeat a thin metal spherical container diameter 32 centimeters is filled 

completely with liquid nitrogen full stop. The container is surrounded by a thin metal 

concentric spherical shell of diameter 36 centimeters and the space between the 2 spheres 

is evacuated, and the space between the 2 spheres is evacuated. The surfaces of the 

spheres facing each other are silvered and have an emissivity of .02. I repeat the surfaces 

of the spheres facing each other are silvered and have epsilon of .02.  

 

Taking the latent heat of vaporization, taking the latent heat of vaporisation of liquid 

nitrogen to be 201 kilojoules per kilogram and the density to be 800 kilograms per meter 

cubed, find the rate at which nitrogen evaporates. Let me repeat that sentence - taking the 

latent heat of vaporisation of liquid nitrogen to be 201 kilojoules per kilogram and the 

density to be 800 kilograms per meter cubed, find the rate at which nitrogen evaporates. 

Assume that the ambient temperature is 303 Kelvin and that the liquid nitrogen is at 77 
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Kelvin. I repeat the last sentence - assume that the ambient temperature is 303 Kelvin and 

that the liquid nitrogen is at 77 Kelvin.  

 

Now let us picture this situation; I want you to focus only on the left hand side of this 

figure for the movement, not on the right hand side so that you see the geometry 

involved. 

 

(Refer Slide Time: 42:32) 

 
 

The inner circle is the spherical container of diameter 32 centimeters surrounded by 

another spherical shell of diameter 36 centimeters and there is a neck here through which 

the liquid nitrogen is poured or taken out. This is all filled with liquid nitrogen so 

cryogenic liquids like liquid nitrogen are stored in spherical containers.  

 

The sphere has the advantage of providing the smallest area for a given volume and so it 

is advantageous to have a spherical shape. You want to after all reduce the amount of 

heat flowing in which will make the liquid nitrogen evaporate. You are told the ambient 

air is at 303 and the liquid nitrogen inside is at 77 K. Now let me, the rectangle that is 

drawn here; it is expanded and let us magnify and let us look at the magnified view here 

so that you see the whole picture now. 
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What you are seeing now is the inner shell and this is the thickness of the metallic shell 

and the hack, the zigzag line indicates that it is silvered. Similarly this is the outer shell, 

this is the thickness and the zigzag line indicates that it is silvered; that space between the 

2 is a vacuum. So this is the inner shell, this is the outer shell, the space between the 2 is a 

vacuum and the two surfaces facing each other are silvered and have an emissivity of .02.  

Now when heat flows it will flow from outside to inside obviously. The outside 

temperature is 303 Kelvin, the inside temperature is 77 Kelvin so heat is going to flow 

from outside to inside. Now when heat flows, I think it is obvious to you that the, it will 

encounter a large number of thermal resistances and what are these? There are 5 thermal 

resistances in the path of the heat flow from outside to inside 
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What are they? There are 5 thermal resistances in the path of the heat flow from outside 

to inside; what are these? Number1 - convective resistance; convective resistance on the 

outer surface of the outer shell, on the outer surface of outer shell, that is the first 

resistance. Then heat flows by conduction through the outer shell so resistance to heat 

flow by conduction through outer shell - that is the second resistance. Third resistance 

associated, resistance associated with radiant heat flux - radiant heat flow, the radiant 

heat flow across the annulus across the vacuum annulus. That is the third resistance. 
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Then the 4th is again resistance to heat flow by conduction, resistance to heat flow by 

conduction through inner shell and the last resistance will be the convective resistance, 

convective resistance on the inner surface of the inner shell. These are the 5 thermal 

resistances. Now out of these, the dominant resistance in this case is going to be the 

resistance associated with radiant flow across the annulus. Number 3 - that is going to be 

the dominant resistance. That is the purpose of having that vessel in which you are 

storing the liquid nitrogen. You have a vacuum between in the annular space, you silver 

those surfaces so you try to reduce the radiant heat flow rate; that is your dominant 

resistance. 

 

Therefore, what we are going to do is we are going to say this is so dominant a resistance 

that the other resistances are insignificant. So, although I have a situation like this, across 

the annular space starting from the outside, a resistance here, a resistance by conduction 

here, then the radiant heat flow dominant resistance, then a resistance by a conduction 

here, then a convective resistance, I say the dominant resistance is in this vacuum and 

therefore I can assume that the temperature - if it is the dominant resistance - I can take 

this temperature to be 303 and these other temperature at the inner surface to be 77 

Kelvin. 
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I will say since it is the dominant resistance all the temperature drop really takes place 

across this dominant resistance and therefore take the temperature of the outer surface of 

the inner shell to be 77 and the temperature of the inner surface of the outer shell to be 

303. If I do that then it is just a substitution into the expression we have derived. We will 

get q1 is equal to, now I am substituting sigma A1 T1 to the power 4 minus T2 to the 

power 4 the whole thing divided by 1 by epsilon 1 plus A1 upon A2 1 by epsilon 2 minus 

1 - just substitute into this expression now, all the data is given. So if you substitute you 

will get 5.67; let me just show that now.  
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Substituting you will get - 5.6 7 into 10 to the minus 8 to 4 pi into .16 square that is A1; 

77 to the power 4 minus 303 to the power 4 divided by 1 upon .02 plus 16 by 18 the 

whole square - that is A1 upon A2. 1 upon .02 minus 1 which is minus 1.73 watts and if I 

want the evaporation rate, I find out how much evaporates during the whole day and 

divided by the latent heat and I get .74 kilograms per day.  

 

Now, I want you on your own to show that the resistances which we ignored, that is the 

convective resistances and the 2 convective resistances and the 2 conductive resistances 

are in fact insignificant. We have studied conduction; you know the values of h that you 
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would get in convection, you should be able to show that in fact they are insignificant and 

that the temperature drops across those would be insignificant compared to the 

temperature drop that we encounter in the annular space.  

 

Now, we have come to the end of what we wanted to do in radiation, let me just sum up 

the, sum up the topics that we have covered in radiation. 
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We have covered first basic concepts, then we have covered emission characteristics of 

surfaces, then we have covered the laws of black body radiation. Then we have talked 

about radiation incident on a surface, what happens to it - it is absorbed, it is reflected, 

etcetera - and defined terms like absorptivity, reflectivity, etcetera. Then we have talked 

about the directional nature of radiation and defined terms like solid angle and intensity 

of radiation.  
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Having done all this, we then calculated, derived expressions for heat exchange by 

radiation between black surfaces, heat exchange by radiation between black surfaces, in 

the process defined an important terms called the shape factor; then went on to radiant 

heat exchange in an enclosure, in an enclosure with black surfaces and finally we talked 

about radiant heat exchange in the annular space between cylindrical, between 2 tubes, 2 

spheres, etcetera and we took the special case finally today of A1 upon A2. The last thing 

which we looked, that was the special case when A1 upon A2 tends to 0.  

 

Now, we have come to the end of what we wanted to do with radiation and we will now 

be turning our attention to the third mode convection, studying first a little fluid 

mechanics and then studying convection. 

 


