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So far we have calculated the radiant heat exchange between black surfaces - 2 black 

surfaces at 2 different temperatures - and in the process of deriving expressions for the 

radiant heat exchange between 2 black surfaces, we have defined a term called as the 

shape factor. Now today we would like to extend these ideas to first calculate radiant heat 

exchange rates in an enclosure consisting of a number of black surfaces. Consider the 

following enclosure as shown here.  

 

(Refer Slide Time: 01:33) 

 
 

This is A3 surface enclosure; it could be, it is shown as a cylindrical enclosure but it 

could be any 3 surface enclosure. The surface 1 is this surface, this surface; surface 2 is 

this surface and surface 3 is the round surface, the curved surface of the cylinder. Now 

we have told in this case that the surface 1 is at a temperature T1, the surface 2 is at a 

temperature T2 - is at a temperature means is maintained at a temperature T2 and surface 
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3 is an, in perfectly insulated wall, the curved surface is perfectly insulated. It has 

refractive material all round and is perfectly insulated and we call that a surface 3.  

 

We assume arbitrarily that surface 1 is at a higher temperature than surface 2. It could be 

any way; it just, I am taking, making just an assumption. Therefore, obviously the surface 

1 is going to be the surface at which heat is going to be supplied and surface 2 is going to 

be the heat surface at which heat is going to be received because it will be at a lower 

temperature. So T1 is the temperature of the surface 1 and T2 temperature of surface 2. q1 

is the rate at which heat is supplied at surface 1 and q2 the rate at which heat supplied at 

surface 2. We would like to find in this case the values of q1 and q2 and also find what is 

the temperature attained by the wall 3 - the curved wall 3.  

 

Now again repeat - although I have shown a cylindrical enclosure, it could by any 3 

surface enclosure; it doesn’t have to a cylinder at all. So let me again just put that down 

what is specified and what is to be found in this particular case. 

 

(Refer Slide Time: 03:55) 

 
 

T1 is specified, the temperature T1 is specified; surface 1 is maintained at this 

temperature T1. T2 is specified and it is specified that at the surface 3 we have very good 
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insulation. Therefore it is specified that q3 - the rate at which heat flows at the surface 3 - 

would be 0 because it is perfectly insulated. These are all specified quantities; what are 

we asked to find? We are asked to find q1 - the rate at which heat is supplied at the 

surface 1. It orders that it should remain at the temperature T1, q2 rated which heat is 

supplied at the surface 2 in order that it should remain at the temperature 2 and T3 the 

temperature attained by the surface 3 so that it is, it satisfies the condition of being a 

perfectly insulated surface and this is the problem as is posed. 

 

All the surfaces are black; I repeat it is A3 surface enclosure with the all surfaces black. 

Now let us use the expression which we have derived for heat exchange between black 

surfaces. In order to derive the q, well expressions for q1 q2 and T3, let us use the 

expression which we have derived the earlier for heat exchange rate between two black 

surfaces.  
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q1 the rate at which heat is supplied at surface 1 is obviously equal to q13 plus q12 and 

that in turn what is q13? q13 is nothing but A1 F 13 F 13 eb1 minus eb3 - this is the 

expression which we have derived earlier - plus q12 is nothing but A1 F 12 eb1 minus eb2. 

I am writing eb1 eb2 and eb3 instead of writing everywhere sigma T1 to the power 4 or 
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sigma T2 to the power of 4 or sigma T3 to the power of 4; that is really what eb1 eb2 and 

eb3 represent. Instead of keeping on writing the bigger expression, I will write eb1 eb2 eb3; 

at the end I will substitute the Stefan Boltzmann law.  

 

So, the rate at which I supply a heat at the surface 1 must be equal to the heat exchange 

rate between 1 and 3 and the heat exchange rate between 1 and 2. Similarly q2 must be 

equal to q2 1 plus q23 which is equal to A2 F 2 2 1 eb2 minus eb1 plus A2 F23 eb2 minus 

eb3 and finally for the surface 3 I can say q3 is equal to A3 F3 1 eb3 minus eb1 plus A3 F3 

2 eb3 minus eb2. And we know that q3 is equal to 0; so I have 3 equations now: the first, 

this equation, the second of third equation. I have 3 equations and 3 unknowns; what are 

my 3 unknowns? q1, q2 and eb3. eb3 is nothing but, eb3 is nothing but T3; instead of 

writing sigma T3 to the power of 4, I am writing eb3.  

 

So, I have got three linear equations in 3 unknown; solve for them and I will get the 

quantities q1 q2 and eb3. So it is a very straight forward problem which we have. If you 

solve these equations, we will get now, I am skipping a few simple algebraic steps and 

giving the solution.  
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I am saying if you solve those 3 equations for the 3 unknowns q1 q2 and eb3 that is T3, we 

will get q1 is equal to minus q2 which is equal to eb1 minus eb2 in to A1 F 12 plus A1 F 13 

F3 2 divided by F32 plus F31 and the third unknown T will be equal to F3 2 T2 to the 

power of 4 plus F3 1 T1 to the power 4 divided F32 F31 the whole thing within square 

bracket to the power 1 by 4 - this is the solution to the problem, this is what we are 

looking for. So you can see 3 surface enclosure where all the surfaces are black and the 

temperature is specified or the quantity q is specified at that surface. Then we get as 

many equations, there are surfaces for the enclosure and we solve for the required 

number of unknowns; that is all that it really comes to. 

 

Now in this particular case, as I said this is the general situation that we have solved for. 

Suppose I have a 3 surface enclosure in which F 1 to 1 is equal to F 2 to 2 is equal to 0 

 

(Refer Slide Time: 10:01) 

 
 

That means I have a three surface enclosure like the one I showed at the beginning. That 

means the cylindrical enclosure which I showed - let me show it again. Suppose I had 

such an enclosure in which one is the flat surface, 2 is a flat surface therefore F 1 to 1 and 

F 2 to 2 are automatically 0.  
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Let us say that is the enclosure that I have, then one can in fact show quite easily that 

expressions which we derived for q1 and q2 will simplify to the following form. And this 

again is a matter of just little algebra so I am skipping a few lines here I would like you to 

proceed from the earlier solution which I displayed again. This is the earlier solution; in 

this solution, assume in this solution, add the extra knowledge that F 1 to 1 and F 2 to 2 

are 0 and then show that this solution reduces to this solution now.  

 

The simplified solution q1 equal to minus q2 equal to sigma into T1 to the power of 4 

minus T2 to the power of 4 A1 within square bracket A2 minus A1 F 1 to 2 the whole 

square divided by A1 plus A2 minus 2 A1 F 1 to 2. Notice know the only unknown is A F 

1 to 2; all other shape factors are eliminated because they are related in some way to F 1 

to 2 through the enclosure relationship which we mentioned earlier.  

 

We can show further that T3 will come out to be equal to A2 minus A1 F 1 to 2 the whole 

thing multiplied by T2 to the power of 4 plus A1 into bracket 1 minus F 1 to 2 close a 

bracket T1 to the power of 4 divided by A1 plus A2 minus 2 A1 F 1 to 2 the whole thing 2 

to the power of 1 upon 4. So we get the simplified expressions if we have an enclosure in 

which F 1 to 1 is equal to F 2 to 2 is equal to 0.  

 

So, we have a general situation which we have solve for; this is the more specific 

situation in which F 1 to 1 is equal to F 2 to 2 is equal the 0. Now in order to just clear up 

ideas, let us do the following problem. I am going to solve the following problem just to, 

it is a really just a substitution; let us say we have an enclosure like this. 
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Let us say we have a rectangular enclosure like this - this is the rectangular enclosure that 

we have and in this rectangular enclosure you are told that the sides are 1 meter by 2 

meters; the sides of the horizontal faces are 1 meter by 2 meter and the vertical edges are 

all 4 meters. You are further told, let us say that the top surface, the horizontal face at the 

top, this one is the surface 1. This is the surface 1 maintained at a temperature of 200 

degrees centigrade, 473 K. Let us say the horizontal face at the top, the 1 by 2 meter face 

at the top which is maintained at a temperature of 473 K is this one now. The bottom face 

which I will shade again this 1, this is surface 2 this is surface 2 and this is at a 100 

degree centigrade that is 373 K and you are told that the 4 vertical faces make up surface 

3. The 4 vertical faces that is these - the 4 vertical faces make up surface 3, 4 vertical 

faces make up.  

 

That is the 3 surface enclosure now because we are specifying the top horizontal face is 

surface 1, the bottom horizontal face is surface 2 and all the 4 faces together which are 

vertical make up what we call as a surface 3 and that is perfectly insulated. Therefore for 

those 4 faces q3 is equal to 0 - perfectly insulated surfaces. To find q1, q2 and the 

temperature attained by the surface 3 that is T3; so it is a direct substitution into the  

expression that we just derived and the first thing we will need to know of course is the 
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shape factor F 1 to 2 between the top face, the top horizontal face and the bottom 

horizontal face of this rectangular enclosure. So let us first find out F 1 to 2.  

 

Recall in the previous lecture, we had given we had shown a figure in which the values of 

a F 1 to 2 are plotted. So what do we need for that figure? We have a situation of 2 

parallel rectangles; this is a situation of 2 parallel rectangles of equal size. In order to read 

of the value F 1 to 2 from the available graphs, we need the values of L1 by D and L2 by 

D and in this case L1 by D will be .5; it is 2 by 4 and L2 by D will be 1 by 4 that is .25. 

So now go to the graphs. 

 

(Refer Slide Time: 18:11) 

 
 

The graphs are - if you go to the available graphs, they are, give the value of F 1 to 2 

plotted. All we have is a plot like this F 1 to 2 is plotted against L2 by D and there are 

different graphs like this for different values of L1 by D. So in this particular case, look 

up the value of h, go to the value of .25 here for L2 by D. Go up vertically to the graph 

corresponding to L1 by D equal to .5 then go horizontally and this is our value of F 1 to 2. 

And in this particular case, we will get, if you look up the graphs which I want you to do 

on your own. Go to any text book, any of the references that I have given you and you 

will read off the value F 1 to 2 in this case is to be .036.  
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Now, let us substitute into the expression that we have for q1 and q2; we have also in this 

particular case A1 is equal to A2. So since A1 is equal to A2, our expression for q1 equal 

to minus q2 in this particular case becomes sigma A1 T1 to the power 4 minus T2 to the 

power 4 within square bracket 1 minus F 1 to 2 the whole squared divided by 2 into 1 

minus F 1 to 2. The earlier expression that I have given you in that expression - put A1 

equal to A2 and you will get this for q1 equal to minus q2 equal to this. And note I 

haven’t mentioned it earlier but note q1 is equal to minus q2; it has to be all right why 

because there are 3 surfaces making up the enclosure.  

 

In a steady state q1 plus q2 plus q3 must be equal to 0 - the first law thermodynamics 

requires that. Net rate at which heat enters through all the 3 faces must be equal to 0. q3 

is equal to 0 in this case of, q1 must be equal to minus q2. Now in this particular case 

substitute now the given numbers; that means substitute the value of sigma into A1 which 

is 1 by 2 in to 473 to the power 4 minus 373 to the power 4. The whole thing into 1 minus 

.036 the whole squared 2 multiplied by 1 minus .036. And if you calculate the value, you 

will get 1803 watts. So the rate at which you supply heat at the surface 1 will be 1803 

watts. 

 

The rate at which you extract heat at the surface 2 is 1803 watts and that is what 

maintains the steady state in that enclosure and further if you calculate T3 in this case, 

you will get T3 is equal to again making use of the fact that A3 A A1 is equal to A2, T3 

becomes T1 to the power 4 plus T2 to the power 4 divided by 2 the whole thing to the 

power of one fourth. 
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So it is nothing but 473 to the power 4 plus 373 to the power of 4 divided by 2, the thing 

to 1 4th which is equal to 432 K. T3 must be a temperature between T1 and T2; quite 

obviously surface 3 has to attain a temperature somewhere between the 2 extremes. 1 is 

the surface at which we are supplying heat, 2 is the surface at which we are extracting 

heat; surface 3 must acquire a temperature in between - within this case comes out to be 

432 K. So that is the way we would use the results that we have got for the expression 

that we have just derived.  
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Now let us go on; let us say, let me just change the problem a little and say, suppose I 

have some 3 surface enclosure; I am just drawing some arbitrary 3 surface enclosure like. 

Suppose I have a 3 surface enclosure of a given geometry so I can get the values of all the 

shape factors in that enclosure and suppose the surfaces are maintained, suppose the 

surfaces are maintained at temperatures, at temperatures T1, T2 and T3. The 3 surfaces 

are maintained at temperatures T1, T2 and T3. Calculate to find q1, q2 and q3; do this one 

your own, there is nothing to it. It is just the same earlier 3 expressions that we had but 

you know now in this case the values of eb1 eb2 eb3, so you can directly from 3 equations 

which we have put down earlier get the values of q1 q2 and q3. 

 

So, the point I want to make is when you have for any one of the surfaces, you need to 

specify either the rate at which heat is supplied at the surface or the temperature at the 

surface, either the q for the surface or the T for the surface and you can find if one is the 

specified, the other can be found out. So keep that always in mind; be it any 3 surface 

enclosure, if I specify either q or T for it, the other quantity which is not specified can be 

determined. That is basically what we can do with the help of the 3 equations for the 3 

surfaces. 
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Once I have said that for 3 surfaces it is very obvious to you that I can extend these ideas 

to an N surface enclosure. I could have a 4 surfaces in which case I will get 4 equations, I 

could have 5 surface enclosure in which case I will have 5 equations. And in each case 

ask you self - is q specified or is T specified? Depending upon that one is the known, the 

other is the unknown and we solve for as many unknowns, as many q which are 

unknowns or as many T which are unknowns given the other quantities which are given 

to, given the other values which are known.  

 

So, now basically we have got with a theory for calculating heat exchange rates in a black 

surface enclosure. We have really derived expression for A3 surface enclosure but I think 

it is obvious to you that extending these ideas to a 4 surface or 5 surface enclosure 

presents no real problems. The only thing we must able to calculate is the shape factors 

for this enclosure. Whatever be the enclosure, you must be able to get the appropriate 

shape factors; then you can put down a set of equation, then get the values of q or T for 

each surface of the enclosure. 

 

Now, we want to move on to enclosures which have gray surfaces rather diffused gray 

surfaces. Now we want to go on to enclosures which have not black surfaces but diffused 

gray surfaces and what we are going to do first is 
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We are going to calculate heat exchange rates by radiation in an enclosure which consists 

of only 2 surfaces. What are the 2 surfaces, 2 infinite parallel diffused gray surfaces we 

are going to consider such an enclosure? An enclosure which has 2 surfaces and the 2 

surfaces are 2 infinite parallel surfaces which are diffused gray. We have taken a two 

surface enclosure because it is the simplest to handle first of all and then we will go on to 

a few more complicated cases later. 

 

So, the first thing we are going to look at now is heat exchange rates by radiation between 

2 infinite parallel diffused gray surfaces that is effectively a two surface enclosure made 

up of 2 infinite parallel surfaces. Now let us, let me just sketch the surfaces. 
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Let us see - these are 2, this 1 surface, this is another surface. These are 2 diffused gray 

surfaces, infinite surfaces parallel to each other and obviously they make up a two surface 

enclosure because they are infinite in extent. I will call this as the surface 1 and I will call 

this as the surface 2 and let us say that the surface 1 is maintained at temperature T1, the 

surface 2 at temperature T2. These are diffused gray surfaces and further let us say they 

are opaque, further let us say they are opaque surfaces. Let the emissivity of these 2 

surfaces, let the emissivities of these 2 surfaces be epsilon 1 and epsilon 2. 

 

It follows from Kirchoff's laws since they are diffused gray surfaces that the absorptivity 

is also epsilon 1 and epsilon 2; emissivity is equal to absorptivity because they are 

diffused gray surface and opaque. If they are opaque, it follows that the reflectivity of the 

surfaces will be 1 minus epsilon 1 and 1 minus epsilon 2, so let me write that also. The 

reflectivity of these 2 surfaces, this 1 will be 1 minus epsilon 1, this 1 will be 1 minus 

epsilon 2 because they are opaque therefore absorptivity plus reflectivity must be equal 

the 1. So, this is the characterization of the surface - a two surface enclosure made up of 2 

infinite parallel plates. 
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Diffused gray surfaces, opaque surfaces maintained at temperatures T1 and T2, emissivity 

and absorptivities are epsilon 1 and epsilon 2, reflectivities are therefore 1 minus epsilon 

and 1 epsilon 2. We are required to find, to find the rate at which heat is supplied at the 

surface 1 or the heat flux is supplied at the surface 1 and rate at which heat is supplied at 

the surface 2 - q by A1, q by A2, heat flux supplied at surface 1, heat flux supplied at 

surface 2.  

 

Obviously, I need notes, repeat what I have said earlier - q by A1 must be equal to minus 

q by A2 that is obvious. So I will be getting both these, the values for both expressions, 

for both these simultaneously. So we want to find out expressions for q by A1 - rate at 

which heat is supplied at the surface 1 and at the surface 2. Now let us do the following in 

order to derive this expression; let us consider the radiation going back and forth between 

these 2 infinite surfaces. We are going to consider radiation going back and forth between 

these 2 surfaces. 

 

(Refer Slide Time: 33:11) 

 
 

Before I do that, let me first of all state from the Stefan Boltzmann law, the emissive 

power of surface 1 is epsilon sigma T1 to the power 4 and the emissive power of surface 

2 is epsilon 2 sigma T2 to the power of 4. So I keep on writing e1 and e2 for some time; 
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right at the end I will substitute these expressions for e1 and e2. And as I said, moment 

ago, let me repeat I am going to analyze what happens to the radiation which is emitted 

by 1 surface. What is going to happen is any radiation emitted by say the surface 1 or the 

surface 2 will go to the other surface, get partly absorbed and partly reflected, will come 

back to the original surface where it will get partly absorbed, partly reflected, will again 

go back to the first, next surface partly absorbed, partly reflected.   

 

So, you will have successive reflections and absorptions as the radiation is bounced back 

and forth. Any radiation emitted from 1 surface bounces back and forth and is 

successively absorbed and reflected. We want to analyze in this manner. So, let us now 

look at the surface 1 and see how the radiation is absorbed and reflected. 

 

(Refer Slide Time: 34:48) 

 
 

e2 is the emissive power of surface 2 so many watts per meter squared let us say is being 

emitted from this surface 2; this is the surface 2. e2 is its emissive power now  I am 

showing one arrow here but this arrow is symbolic. Actually this radiation emitted from 

the surface 2 from this element here is, this radiation is really going off in all directions 

because it is a diffused gray surface. So radiation is really going in all directions like this, 

all of it ultimately has to reach the surface 1 because 1 and 2 are infinite in extent but I 
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am just showing one arrow to say, to indicate symbolically radiation emitted by the 

surface 2 and what is its flux? Its flux is e2 so let me draw it in bold letters here - e2 so 

many watts per meter square.  

 

This e2 when it ultimately reaches the surface 1 not by this arrow but in any, whichever 

direction, it goes ultimately hits the surface 1. It is going to get absorbed; how much is 

going to get absorbed? What is going to get absorbed is epsilon1, e2 – that is the quantity 

that is going to get absorbed. What is going to get reflected is 1 minus epsilon 1 e2 – that 

is the quantity that is going to get reflected. Again out of this reflected amount, a certain 

amount will come back and get absorbed in the surface 2. What will that be? That will be 

epsilon 2 into 1 minus epsilon 1 e2. That is the quantity that will come, come back to the 

surface 2 and be absorbed by. The balance will get reflected that will be1 minus epsilon 2 

into epsilon 1 into e2 that is this quantity and so on.  

 

So, as you can see - as the radiation goes back and forth, we will have a certain amount 

absorbed, reflected, absorbed, reflected, absorbed, reflected and so on. So now you say to 

yourself the radiant flux - if you take an algebraic sum of all this - you can say radiant 

flux emitted by the surface 2 and absorbed by the surface 1; if you ask yourself what is 

that amount? Radiant flux emitted by 2, emitted by the surface 2 and absorbed by surface 

1 will be equal to the first term, will be epsilon 1 e2 - this is the first quantity. e2 is 

emitted, epsilon 1 into e2 is absorb by the surface 1 now again comes back to surface 2, is 

reflected from surface 2, again get absorbed plus the next quantity is going to be epsilon 

1, 1 minus epsilon 2, 1 minus epsilon 1 e2 plus the next quantity is going to be epsilon 1, 

1 minus epsilon 2 the whole squared 1 minus epsilon 1 the whole square in to e2 plus.  

 

That is how we are going to get an infinite geometric progression series which is equal to 

let me just put it properly this is equal to e2 i will take that outside that is a common 

factor i will take epsilon 1 outside that is common and i will geT1 plus 1 minus epsilon 2 

1 minus epsilon 1 plus 1 minus epsilon 2 the whole squared 1 minus epsilon 1 the whole 

squared plus so on and if I sum this geometric progression within the square bracket, I 

will simply get e2 epsilon 1 1 upon 1 minus 1 minus epsilon 2 1 minus epsilon 1.  
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This is the radiant flux emitted by surface 2 and absorbed by surface 1 and I can simplify 

that expression a little further and say this further equal to, this is further equal to, on 

simplifying e2 epsilon 1 divided by epsilon 1 plus epsilon 2 minus epsilon 1 epsilon 2 

that is what it will simplify to; which you can check yourself. So this is the radiant flux 

emitted by surface 2 and absorbed by surface 1.  

 

Now in a similar manner, in a similar manner we can find the radiant flux, radiant flux 

emitted by surface 1 and absorbed by surface 2. If you do that you will get e1 epsilon 2 

divided by epsilon 2 plus epsilon 1 minus epsilon 2 epsilon 1 - that is what you will get. 

All that I have done is I have replaced in the previous expression which we derived - I 

have replaced 2 by 1 and 1 by 2. And I will get this; I don’t need to really derive it and go 

through a geometric progression.  

 

So, I have now 2 expressions - the radiant flux emitted by surface 2 and absorbed by 1, 

the radiant flux emitted by 1 and absorbed by surface 2. I take the difference of the 2 and 

that is the radiant heat flux exchanged between surface 1 and surface 2. So we will get the 

radiant heat flux exchanged between surface 1 and surface 2 will be given by - let us put 

that down now. 
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Therefore, the radiant heat flux exchange, net exchange of radiant heat flux, net exchange 

of radiant heat flux between 1 and 2, between the surfaces 1 and 2 which is nothing but q 

by A1 to 2 will be equal to the difference of the 2 expressions we had earlier. So I am to 

going to get e1 epsilon 2 minus e2 epsilon 1 the whole thing divided by epsilon 1 plus 

epsilon 2 minus epsilon 1 epsilon 2. And now if I write the full expressions for e1 and e2 

that is epsilon 1 into sigma into T1 to the power 4 and epsilon 2 into sigma into T2 to the 

power of 4. I will get this is equal to sigma epsilon 1 epsilon 2 T1 to the power 4 minus 

T2 to the power 4 divided by epsilon 1 plus epsilon 2 minus epsilon 1 epsilon 2 which I 

can write further as sigma into T1 to the power of 4 minus T2 to the power 4 divided by 1 

by epsilon 1 plus 1 by epsilon 2 minus 1. This is the expression that we get for q the heat 

flux - net radiant heat flux exchanged between the surface 1 and the surface 2. 

 

Now, there are 2, only surfaces are in this enclosure so if there are only 2 surfaces, the net 

radiant heat flux exchanged between the 2 surfaces is equal in magnitude to the net 

radiant heat flux leaving either of the 2 surfaces. So in this particular case, since there are 

only 2 surfaces involved q by A12 must be equal to q by A1 which in term must be equal 

to q minus q by A2.  
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And that in terms is equal to sigma T1 to the power of 4 minus T2 to the power of 4 

divided 1 by epsilon 1 plus 1 plus epsilon 2 minus 1. So this is the expression that we are 

looking for the heat supplied or the heat flux supplied at the surface 1 or at the surface 2 

and this is a rather well known expression; you should know this - anyone studying 

radiation has to know this expression - the radiant heat flux exchanged between 2 

diffused gray surfaces constituting a system of infinite parallel plates. 

 

(Refer Slide Time: 46:09) 
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Now we want to look at a problem; we are going to look at the following problem, we 

will say, suppose I have a surface 1 and a surface 2 like, this is surface 1 and this is the 

surface 2. Surface 1 is maintained at a temperature T1, surface 2 is maintained at 

temperature T2. They are a system of infinite parallel plates; we know the expression for 

heat flux exchange between these 2 surfaces. By the, this is the radiant heat flux 

exchange so in all this we have assumed that there is a vacuum between these 2 infinite 

parallel plates; we have not looked at any convective heat transfer. So keep in mind we 

are doing all these calculation as if there is a vacuum in the space between the infinite 

parallel plates or there is a vacuum in the black surface, 3 surface enclosure which we 

considered earlier.  

 

Now in this system, let us say we insert a third plate like this in between. Let us say I 

have inserted between these two a third plate 3 which is a thin opaque infinite, a thin 

opaque infinite plate. Let us say I insert between 1 and 2 a thin infinite opaque plate 3 

and let us say that its emissivity on both surfaces is e3 - it is a gray surface diffused gray. 

Surface 1 and 2 are diffused gray of course so their emissivities are epsilon 1 and epsilon 

2. So in between, you insert a thin opaque infinite plate which has, which is also diffused 

gray and has an emissivity epsilon 3.  

 

Now, what is to find - q by A1; that is the problem, this thin opaque infinite plate 

incidentally is often referred to as a shield. It is something between 1 and 2 so it is like a 

shield. Now it is quite obvious that the shield will acquire a temperature T3; the shield 

will acquire a temperature T3 such that q by A1 will be equal q by A1 to 3 will be equal 

to q by A3 to 2 - that is what is going to happen in the steady state. If I put a shield in 

between, 3 will acquire a temperature T3 such that the net heat exchanged between 1 and 

3 is equal to the net heat exchange, radiant heat flux exchange between 3 and 2. Now we 

can put down expressions for these quantities; we just derived them. 
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What is q by A1 to 3? q by A13 is equal to sigma; the expression that we have just derived 

T1 to the power of 4 minus T3 to the power of 4 divided by 1 by epsilon on 1 plus 1 by 

epsilon 3 minus 1 and q by A2 is equal to sigma T3 to the power of 4 minus T2 to the 

power of 4 divided by 1 by epsilon 3 plus 1 by epsilon 2 minus 1 and q by A13 and q by 

A2 are equal and what are they equal to? They are nothing but equal to q by A1 which is 

what we want to solve for. So we have got two equations now which we have to solve for 

q by A1 and for T3. You got two equations which you want to solve primarily for q by A1 

but we could also get the value of T3. So since we are interested in q by A1 eliminate T3 

to the power of 4. 

 

Now, I am skipping a few steps; that means you will have to write this as T1 to the power 

of 4 minus T3 to the power of 4 equal to something; and this equation you will have to 

write as T3 to the power of 4 minus T2 to the power of 4 equal to something. Then add 

that two expressions in which case you will eliminate T3 and you will get - I will just put 

down the final expression. You will get 1 upon sigma q by A1 into 1 by epsilon 1 plus 1 

by epsilon 2 plus 2 by epsilon 3 minus 2 is equal to T1 to the power of 4 minus T2 to the 

power of 4. That is what you will get or finally you want an expression for q by A1, you 

will get q by A1 is equal to in this case 
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q by A1 is equal to sigma into T1 to the power of 4 minus T2 to the power of 4 divided by 

1 by epsilon 1 plus 1 by epsilon 2 plus 2 by epsilon 3 minus 2. That is the final 

expression for the heat flux - the rate at which heat is supplied at the surface 1 or this also 

equal to minus q by A2.  

 

Now, consider the special case if epsilon 1 equal to epsilon 2 equal to epsilon 3. In this 

case then q by A1 is equal to sigma T1 to the power of 4 minus T2 to the power of 4, 2 

times 2 by epsilon minus 1 - that is what you will get. What you have got really is if the 

epsilons are all equal; what in effect you are saying is q by A1 - that is what you are 

saying is - q by A1 with one shield is equal to half into the value of q by A1 without a 

shield. That is what you are getting with one shield, the value of q by A1 is reduced by 

half 1 by 2 extend this on your own now. 

 

Suppose I have 2 shields instead of 1, what result will you get? Show that you will get 1 

by 3 instead of 1 by 2; if have n shields you should get 1 upon n plus 1 into the value of q 

by A1 without a shield. So a shield, one shield reduces the value by half,  2 shields reduce 

the value by 1 by 3, to what you would get to the value you would get without a shield. 

So that is the special case if of course epsilons are all equal. 


