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Today we are going to first look at radiant heat exchange between 2 finite sized black 

surfaces.  
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Last time you will recall that we had, when we stopped, we had derived the expression 

for heat exchange, rate of heat exchange between 2 differential areas dA1 and dA2 at 

temperatures T1 and T2 and the expression which we had derived was the following.  
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Let me first repeat that the expression which we had derived last time for heat exchange 

between 2 differential areas dA1 dA2 was dq 1 to 2 is equal to sigma by pi cosine beta 1 

cosine beta 2 divided by L squared multiplied by T 1 to the power of 4 minus T2 to the 

power of 4 dA2 dA1 - that was the expression which we derived now, that is where we 

stopped, we got this expression. Now we want to extend this expression to the situation 

where we have 2 finite sized black surfaces maintained at uniform temperatures T1 and 

T2; that is what we want to do.   

 

So, let us go back, see the sketch again; these are the 2 surfaces - this is surface A with an 

area A1; this is the surface with the area A2. Let met write this again in big letters, it is 

rather small here. This is A1, this is the finite area A2; they are both black and A1 is 

maintained at a temperature T1, A2 is maintained at temperature T2. We would like to 

know what is the net radiant heat exchange rate between A1 and A2.  

 

Now, suppose I take some differential area dA1 on A1and I take some other differential 

area dA2 on A2, join the 2 areas by this line and let the length be L like last time; then we 

know the expression for heat exchange between dA1 and dA2, so let us extend that now. 
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Obviously, if we want to know what is the value for 2 finite size surfaces and we know 

the expression for 2 differential areas, it follows that all we have to do is to integrate the 

expression which we have for differential areas and we will have to integrate over the 

area A1 and we will have to integrate also over the area A2 which means the expression 

which I have put down here for dq1 to 2.  

 

If I want q1 to 2, let me cancel out the d on this side; if I want q1 to 2 that is the heat 

exchanged by radiation between A and A2, I will integrate this expression twice over the 

area A1 and A2, that is what we will do and that is our expression for q1 to 2. Mow T1 

minus, T1 is a constant, T2 is a constant so T1 to the power 4 minus T2 to the power of 4 

is a constant. I can take it outside the integral; let me also take sigma outside then take,  

so if I take both these outside the integral which is permissible then I will end up with the 

expression, if I do that then I will end with the expression and let me show that I will get 

as is written here.  
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If the surfaces A and A2 are at uniform temperatures T1 and T2, then net radiative heat 

exchange rate between A1A2 q1to2 becomes the following - I have just taken sigma and 

T1 to the power of 4 minus T2 to the power 4 outside the integrals because they are 
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constants and the quantity within square bracket is the integral which I will have to 

perform first over the area A2 and then over A1 or vice versa; it does not matter. Now let 

us again like in the earlier situation define a shape factor; this expression is fine but let us 

define now and put it in terms of a shape factor.  
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So, we will say, defining a shape factor defining the shape factor of surface 1 with respect 

to surface 2; let me repeat that defining the shape factor of surface 1with respect to 

surface 2 F1 to 2 defining it as 1 upon A1 the quantity which I had earlier within square 

bracket all that integral A1 integral over A2 cosine beta1 cosine beta2 upon pi L square 

dA2dA1. If you use this definition of shape factor, our expression for q1 to 2 becomes q1 

to 2 is equal to F1 to 2 sigma T1 to the power of 4 minus T to the power of 4 into A1 

multiplied by A1. Now notice again how we have defined F1 to 2. F1 to 2 is defined, F1 to 

2 is the shape factor of 1 with respect to 2, surface 1 with respect to 2 and we have 

defined it in such a manner that it represents the fraction of the radiation emitted from 1 

which is intercepted by 2.  

 

Note that the definition is not just some arbitrary definition; we have defined it in that 

manner so that if I take the first part of this F1 to 2 sigma T1 to the power 4 into A1, you 
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can see sigma T1 to the power of 4 into A1 represents the total amount per unit time 

emitted from the surface 1. If I multiply by F1 to 2, I get the amount that goes from 1 

towards 2 is intercepted by 2 and because 2 is black is also absorbed by 2. So again I am 

defining shape factor with that physical meaning in mind; it is not some arbitrary 

definition with an integral in it. So we could also define a reverse shape factor.  
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I could define a shape factor in the reverse direction that is from surface 2 to surface 1, I 

could say F 2 to 1 in exactly in the same fashion in the reverse direction I could say. F2 to 

1, F2 to 1 is the shape factor of 2 with respect to 1, is equal to 1 upon A2 the integral over 

A1, the integral over A2 cosine beta1 cosine beta2 pi L square dA2dA1 the same quantity 

within this square bracket that we had earlier.  And we have therefore, we could say q1 to 

2 equal to F2 to 1 sigma T1 to the power of 4 minus T2 to the power of 4 multiplied by A2 

and we should note again like we did earlier that the 2 shape factors F1 to 2 and F2 to 1 are 

related by a reciprocal relation - F1 to A1 is equal to F2 to 1 A2. There is a reciprocal 

relation relating the 2 shape factors, there are 2 independent quantities.  

 

So, we have expressed the quantity q1 to 2, we have expressed the quantity q1 to 2 which 

represents the net radiative heat exchange rate between 1 and 2 in 3 ways. First we have 
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expressed it without a shape factor; that was the first expression which we got simply by 

putting at 2 integrals on the expression for dq1 to 2. Secondly, we have expressed it in 

terms of F1 to 2 and said q12 equal to F1 to 2 sigma T1 to the power of 4 minus T2 the 

power of 4 multiplied by A1. We have expressed it also in the reverse manner by saying 

q1 to 2 is equal to F2 to 1sigma T1 to the power of 4 minus T2 the power of 4 into A2.  

 

We got 3 different ways all equivalent ways of, are the same quantity. Now we want to 

move ead so we have considered 2 situations. What are they? We have considered heat 

exchange rate between 2 differential areas dA1and dA2; we have considered heat 

exchange rate between 2 finite sized areas A1 and A2.  
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Now we say; suppose we have a situation in between the 2, that means we want to 

consider heat exchange by radiation between a finite black surface that is one area is big 

and one is small - small means like a differential area, a small black surface A1 which is 

like dA1. Suppose we have this situation - a small area and a large area - and we want to 

calculate heat exchange rate between them, heat exchange by radiation between them if 

they are maintained at 2 temperatures T and T2. So that is the next situation - the third 
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situation - which is in between the first 2 situations that we have considered and this is 

rather easy to derive; it should not be a problem.   

 

Let us go back again; so let me again repeat - we are deriving the heat exchange by 

radiation between a finite black surface A2 and a small black surface A1; that is what we 

are doing now. A1 can be treated like dA1 - keep that in mind because it is small. So to 

derive it, go back to our initial expression for dq1 to 2; what was our expression?  
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dq12 between 2 differential areas sigma by pi cosine beta1 cosine beta2 dA1dA2 divided 

by, divided by L squared multiplied by T1 to the power of 4 minus T2 to the power for 4 - 

that is how our expression was, heat exchange by radiation between 2 differential areas. 

Now, I mean we want to modify this expression when 1 area is small and 1 is large; the 

small area is A1 and we can treat it like dA1 - that means I can simply replace dA1 by A1 

because it is, it is a small area.  

 

Once again T1 is a constant T2 is a constant so I can take this expression outside the 

integral sign; so what do we get now? If A1 is small, if A1 is small, I need not perform the 

integration over A1 and treat dA1 as just A1 and I will simply get q1to2 in this case, equal 
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the quantity within square bracket will be integral over A2. I have to perform an, only an 

integral over A2 cosine beta1 cosine beta2 divided by pi L squared dA2 the whole thing 

multiplied by sigma A1T1 to the power of 4 minus T2 the power of 4 - that is what we 

will get as the expression for q12.  

 

So, all we have done is substituted A1 for dA1 because A1 is small - equivalent to a 

differential area - taken T1 to the power of 4 minus T2 to the power of 4 outside because it 

is a uniform there; a uniform temperatures are there so that expression is a constant and 

the rest we have put within the square bracket obviously is a shape factor so I can say this 

is equal to F1to2 sigma A1T1 to the power of 4 minus T2 to the power of 4. So again now 

I have an expression for the heat exchange by radiation between 2, between a small 

surface A1 and a large surface A2 and the expression is given here.  

 

I can use the first expression which I am showing just now or I can use the second 

expression which is in terms of a shape factor - shape factor F1to2 being nothing but the 

quantity within the square bracket. So the shape factor F1to2 is nothing but the quantity 

within the square bracket and again it has the same physical meaning; it stands for the 

fraction of the radiation emitted by 1 which goes towards 2, is intercepted and is 

intercepted by 2 that is the meaning of the shape factor.   

 

So, you have got 3 expressions for the heat exchange, net heat exchange rate between 

surfaces, between black surfaces; the surfaces may be differential that means they may be 

very small surfaces dA1and dA2 - small relative to the distance between them. That is 

what we mean when we say small or they may be 2 finite sized surfaces A1 and A2, 

maybe flat, maybe curved. We have put no restrictions on them but at uniform 

temperatures T1 and T2 and the third situation is - one of the surfaces maybe small, 1 

maybe large and we have an, for each of these we have expressions for q1to2 or in the 

first situation dq1to2 because they are differential areas.  

 

Now in all these expressions that we have derived, notice the importance of the quantity 

which we have defined as shape factor. It keeps recovering all the time and it will 
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therefore be useful for us to spend a little time talking about the shape factor and certain 

relations between shape factors. So we will spend a little time now talking about that 

before we move on to doing more heat exchange calculations by radiation. We have done 

some calculations, we have got expressions for 3 situations of heat exchange by radiation 

between black surfaces. But I want to spend a little time talking about shape factor, how 

to calculate it, relations between shape factors before we again move ead to doing 

calculations for heat exchange by radiation for other situations.  
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Now let me again define shape factor I have done it earlier but I repeat, the shape factor,  

it is written here, the shape factor of one surface with respect to another is the fraction of 

the radiation leaving the surface which is intercepted by the other - that is our definition 

of shape factor. By definition, shape factor must be between 0 and 1, a number between 0 

and 1; so let me write that here. By definition, shape factor F whatever it be between 2 

surfaces a and b must be between 0 and 1 - it is it is bounded always by definition.  

 

Now, let us make some remarks on shape factor; the first remark which I have made 

earlier and I am repeating is that between the shape factors of two surfaces 1 and 2, the 

shape factor of 1 with respect to 2 is called F1 to2, the shape factor of 2 with respect to 1 
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is called F2 to1. Between these 2 shape factors, by definition, we have the relationship 

F1to2 A1 is equal to F2 to1 A2. We have this definition, by definition we have this 

relation, this is called the reciprocal relation. Now it is an obvious relation because it 

follows from the definition but the real reason why I am mentioning it is that, to point out 

the utility of this reciprocal relation.   

 

The relationship, the reciprocal relationship is particularly useful when one of the shape 

factors either F1 to2 or F2 to1 is unity, then it is particularly useful. Now when does this 

happen?  
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When is the shape factor F1  to 2  or F2  to 1  equal to unity, when? If you ask the question, 

you obviously if all the radiation emitted by 1 by the surface 1 is intercepted by 2 and one 

of it goes back to 1, mind you then the shape factor of 1 with the respected 2 is 1 – unity. 

Or the reverse F 2 to 1 will be unity when all the radiation emitted by 2 is intercepted by 

1, it goes nowhere else. It doesn’t even go to 2 and when does this happen? This will 

happen when the surface 2 of, I am talking now of F 1 to 2, F 1 to 2 will be unity when 

the surface 2 completely surrounds 1 and the surface 1 is completely convex. 
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Let me given an example; suppose I have a sphere. This is a sphere and let us say sphere 

or a spherical shell, it doesn’t matter and it is at a, I call it surface 1 and let us say this 

sphere is inside this room. It is a sphere of any size inside this room so let me draw this 

room here; this is a rectangular room so let us say this is the room. It has it is a 

rectangular room with 6 faces on this paper, I am drawing only 4 but remember it has 6 

faces so I will call this as the surface 2 the room. Now consider radiation emitted from 

the surface of 1 - surface 1 is spherical, it is a sphere. Radiation emitted from any element 

on surface 1 anywhere, consider that radiation emitted from the surface anywhere on 

surface 1 has to first hit 2, it has no choice therefore in this case F 1 to 2 is equal to 1.  

 

But mind you, suppose just to illustrate to you, 2 surrounds 1 but that is not enough; no 

radiation from 1 should go back to 1 itself. Consider for instance that the object inside 

that is 1 is not a sphere but a shape something like this, let us say this is 2, this is the 

surface 2 still which is this room. But consider that surface 1 instead of being convex as a 

spherical shape is, suppose it had some shape like this. Instead of being a sphere which is 

inside, let us say it has some shape like this. Now let us say this is surface 2; now you can 

see if I take an element on this surface, radiation going out from this element, any 

element like this some of it will go and hit the surface 1 itself.  

 

So, if the surface of 1 is concave in some place, not everywhere, at any place then part of 

the radiation from 1 will come back to 1 itself in which case F 1 to 2 will not be equal to 

1. So the 2 conditions for F 1 to 2 to be 1 or 2 should completely surround 1 so that all 

the radiation from 1 can go towards 2 and no other surface. Secondly, 1 itself should not 

have a concavity so that radiation from some part of 1 goes to 1 itself, it must all go 

towards 2.   

 

Now these are situations, so the first 1 is a situation in which F 1 to 2 is 1. Now in such a 

case if I ask you what is F 2 to 1, you will straight away say for this case F 2 to 1 is equal 

to A1 by A2 multiplied by 1; that is A1 by A2. I don’t have to use the double integral for 

F2 to 1; if you see in, from the definition F 2 to 1 will have a double integral equation 

which is not a double integral expression which is not easy to solve. But using the 
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reciprocal relation, I can straight away tell what is F 2 to 1 and say simply F 2 to 1 is 

equal to A1 upon A2; so you see the benefits of using the reciprocal relation in some 

cases. So that is the first remark that we want to make about shape factor.  

 

The second remark which I want to make about shape factor and which is rather 

important is the following. 
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Let me just show that the second remark which I want to make is the shape factor, the 

value of the shape factor depends only on the geometry and orientation of the two 

surfaces. You will notice when we put the definition, we took temperature outside the 

definition; there is no T1 or T2 in that definition. So shape factor does not depend on the 

temperatures of the surfaces; it depends strictly on the geometry. What are the shapes, 

what are sizes of the surfaces involved, what are the relative orientations, how are they 

orientated with respect to each other - that is what is shape factor depends on.  

 

So, because of this, because of this definition I can do shape factor calculations in 

advance for a variety of shapes and situations encountered in practice; I don’t need to 

know their temperatures for calculating radiant heat exchange. If, there are geometries 
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encountered in practice, frequently encountered in practice; for those geometries, for 

those shapes, sizes, orientation of the surfaces, I can do shape factor calculations and I 

have those available in the form of values which I can use anytime for doing radiant heat 

exchange calculations and that is what people do.  

 

For a variety of situations, for a variety of common situation which occur in practice, we 

have with us shape factors calculated by other people and we use those for doing our 

calculation. We don’t sit down and try to evaluate double integrals most of the time.  
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So, I will say values of shape factors are available for many common configurations. 

Now this figure it is a little small so let me explain it in a figure which shows the shape 

factor between 2 parallel rectangles of equal size, the shape factor between 2 parallel 

rectangles of equal size. Since it is not so clear, let me draw it again. 1 parallel rectangle 

could be this and the other parallel rectangle of equal size which is below is this. I call 

this the surface 1 A1 and this 2 A2; A1 and A2 are 2 rectangles of equal size parallel to 

each other and opposite to each other like the floor and the ceiling of this room these are 

2 parallel rectangles of equal size facing each other or the 2 walls of this room, the 2 side 
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walls which I am pointing. These 2 are 2 rectangles of equal size facing each other or the 

other 2 walls, one behind me and one in front of me; they are also like that.  

 

So, any 2 walls - the floor and the ceiling are 2 rectangles, 2 parallel rectangles of equal 

size facing each other; the shape factor for that has been calculated and that is what is 

given in this graph which is given here. The shape factor F 1  to  2  here, F 1  to  2  is 

plotted, is the value from the red of from the y axis and it is given as a function of F 1  to  

2  is a function of 2 parameters L 1  by D and L2  by D that is how it is given. L1 and L2 

are the sides of the rectangles; this is L1, this is L2  are the sides of the rectangles and D 

is the distance between the 2 rectangles, D is the distance between 2 rectangles. So the 

shape factor F 1 to 2  is given as a function of L1  by D and L2  by D - that is what we 

have in this graph.  

 

So, anytime you have this situation, in practice all you have to do is: for the given 

situation calculate the 2 parameters L1 by D, L2 by D, go to this graph L2 by D is on the x 

axis, this is L2  by D and L1  by D is the parameter which is varying between each graph, 

which is drawn here - this is the parameter L1  by D. So in this case, this is the graph for 

L1 by D equal L1 by D2, L1 by D3 the final one which is dotted is L1 by D equal to 

infinity so all values of L1 by D from .1 to infinity are covered in this graph.  Similarly, L 

tow by D is covered from .1 to twenty so all situations in practice are covered in this 

graph. So for a given situation in practice, calculate L1 by D; calculate L2 by D. Go to 

this graph L2 by D, go to the appropriate curve for L1 by D, read off the value of F 1 to 2 

- that is what we will be, you have to do.  

 

Now, this is just one as an example I showed this. This is one example of shape factor 

calculations which have been done by somebody else which are available to us; in for 

usage whenever we have to do radiant heat exchange calculations and such graphs or 

equations corresponding to these graphs are available for a very wide variety of common 

configuration; a very large number they are available.   
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Let me show you one more example so that you get the idea; here is one more example 

now.  
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Here is a shape factor between rectangles which are perpendicular to each other and have 

a common edge something like this. It is drawn in small here; it is rather small here so let 

me draw it again. These are 2 rectangles like this - this is one rectangle, this is another 

rectangle. This is, they have a common edge and they are perpendicular to each other and 

the dimensions are L1, and L2 and W. So one of rectangles is L1 into W, the other one is 

L2 into W and they are at right angles to each other; we would like to know the shape 

factor.  

 

Now for this case also shape factor has been calculated. It is available to us and what we 

have is - on the y axis here we have F 1 to 2, on the x axis here we have L 2 by W and the 

different graphs which are drawn here are for varying values of L1 by W. So given a 

particular situation - now say this could be the floor of this room and one of the side walls 

or the ceiling of this room and one of the side walls, they are two situations of 2 

rectangles right angles to each other with a common edge could be anyone of these. Now 

given this situation, calculate if you have to do a radiant heat exchange calculation. 
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Calculate L2 by W, calculate L1 by W and then from this graph read off the value of F 1 

to 2. So F 1  to  2  is a function of L1  by W and L2  by W; so again this is very common 

configuration and somebody has done this integral for us and got, we have got the 

expression for us to use anytime we need it.  

 

And like this as I said there are literally hundreds of situations for which shape factor 

calculations have been done and the values are available either in the form of graphs, 

equations, tables whatever it is, they are available to us to use anytime we have to do 

radiant heat exchange calculations. So this is the second remark - the value of shape 

factor depends only on geometry; it has been calculated for a wide variety of situations 

and configurations which are commonly used in practice and these are available in text 

books, hand books for us to readily use.  
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The third remark which I want to make is the following which I have made earlier and I 

am repeating, I am saying a surface has a shape factor with respect to itself. If it is 

concave, this is a remark which I made a little earlier but let me repeat it - what I mean is 

the following.  
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Suppose I have a surface like this - a concave surface like this surface 1; this is my 

surface 1, it is concave like this, emitting radiation. It is obvious now if I take some 

element on this surface, then some of the radiation from it is emitted; radiation is emitted 

in all directions of a hemisphere. But some of the radiation emitted is obviously going to 

come back to the surface itself so this is a case because of the surface being concave; it 

follows that F 1 to 1 is not equal to 0.   

 

On the other hand, if the surface 1 is say flat; suppose this is the surface 1 and now if I 

consider radiation emitted from any element, elementary area on this surface, you will 

agree with me that radiation emitted from surface 1 anywhere on surface 1 will go out 

like this and will not be intercepted by 1; so this is a case where F 1  to  1  will be equal 

to 0 or let us take the case when surface 1 is let us say convex like this; then also F 1  to  

1  quite obviously equal to 0. 

 

Just to clarify, the surface 1, it may be flat, the surface 1 maybe curved, the surface one 

maybe consisting of 2 flat surfaces together that also maybe surface 1. For instance, let us 

go back to this room; here is our room. Let me draw it in 2 dimension, this is my room 

which I am sitting. If I want to do radiant heat exchange calculation and want to treat all 
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the surfaces, the 6 surfaces of this room as being independent then I will call them as 1 2 

3 4 and the 2 surfaces which I can’t show here which in 3 dimension will be seen like this 

as 5 6 so I will have 6 surfaces.  

 

Now if, treat the 6 surfaces as surfaces independent of each other; F 1 to 1 , F 2 to 2 , F3 

to 3 all for each of the surfaces will be 0. But let us say surface 1and 2 are at the same 

temperature so for purposes of calculation radiant heat exchange, I can treat 1 and 2 as 1 

surface. Then it follows that 1 and 2 - now surface 1 and 2 if I treat it as 1 surface call it 

as say surface a - it follows that for this surface a which consists of 1 plus 2 together 2 

rectangles together as the common edge, it follows for this case that the shape factor of 

surface a with respect to itself will be non-zero. 

 

So, for this case now - let me write it here - for this case F 1 to1 was 0 if 1 is only a flat 

surface, F 2 to 2 will be 0. But if 1 and 2, the 2 flat surfaces are treated as 1 surface 

together and I call this as a that is 1 plus 2 I call as equivalent to the surface a, some 

surface a, then F a to a is non-zero. So a surface maybe flat, a surface maybe curved, a 

surface maybe a combination of 2 flat surfaces, 2 curved surfaces, one flat surface and a 

curved surface, whatever it is, it is up to me to decide depending upon the radiant heat 

exchange calculation that I have to do. And for that situation once I have defined what 

are my surfaces then I have to see whether F 1 to1 or F a to a is 0 or non-zero - this 

remarkable surface having a shape factor with respect to itself.   

 

Now let us go to one more relation which is important and that is the following.  
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Suppose I have an enclosure made up of n surfaces, let us say I have some enclosure and 

just to make things, you know show that they are massy, I have drawn one as a flat 

surface - surface 1, surface 2 I have drawn as a convex surface. Surface 3 I have drawn as 

a concave surface, then surface 4 again I have drawn as a convex and again as a convex 

surface I have a drawn a 5 surface enclosure in 2 dimensions here. Let us say theses 5 

surfaces make up an enclosure; I could think in general terms of an n surface enclosure 

making up an enclosure. So the n surfaces maybe flat, they maybe curved; the curved 

surfaces maybe convex or concave, it doesn’t matter what.  

 

Now if these n surfaces - n surfaces 1 2 3 up to n surfaces - if they make up an enclosure, 

then it follows that all the radiation emitted from any one surface has to go to all the other 

surfaces that is surfaces 2, 3, 4, etcetera up to n and to the surfaces 1 itself if F 1 to1 is 

non-zero. So I can state that as follows - I can say for an n surface enclosure, let me write 

that now; let me show that. 
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For an n surface enclosure F1 to 1 plus F1 to 2 plus F1 to 3 plus dot dot dot F1 to n equal 

to 1 because all the radiation emitted from 1 has to go to either to 1 or to 2 3 up to n all 

that must add up to1 and if 1 is a flat surface or if 1 is convex, then this F1 to1 will be 

automatically, we will put a 0. Similarly, consider the radiation emitted from surface 2; it 

follows that F 2 to 1 plus F 1 to 2 plus F 2 to 3 plus F 2 to n is equal to 1 and so on. If I 

consider the nth surface of this enclosure, Fn to1 plus Fn to 2 plus Fn to 3 dot dot dot Fn 

to n is equal to 1. So I can write down n such equations for the n surfaces making up this 

enclosure; so these are relations between all the shape factors when surfaces make up an 

enclosure and we will use these, we can use these to calculate one shape factor from 

another - that is the advantage. The last remark which I want to make is the following  
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Suppose I have two surfaces - 1 and 2, let us say I have a surface 1, some arbitrary 

surface, maybe curved or may not be curved. Let us say I have a surface 1 like this and 

let us say I have some surface 2 like this arbitrarily located in space - 2 finite sized 

surfaces - and let us say I break up the surface 2 into 2 parts like this. I have broken it up 

in to 2 parts, I call this as surface 3, this is surface 4. That means A2 is equal to A3 plus 

A4 - the two surfaces 3 and 4 make up the surface 2. Now radiation going from 1 towards 

2, the fraction of radiation going from 1 towards 2 is F1 to 2; it follows that since 3 and 4 

make up to that, F1 to 2 must be equal to F1 to 3 plus F1 to 4, it follows, isn’t it? So let 

me show that in writing.  

 

 

 

 

 

 

 

 

 



 22 

(Refer Slide Time: 42:47)  

 
 

It follows that F1 to 2 must be equal to F1 to 3 plus F1 to 4 if the 2 areas A3 and A4 make 

up the area A2 but note the reverse is not true. Many people sometimes will say F 2 to1, F 

3 to1 and F 4 to 1 - these are the reverse shape factors in the reverse direction. This F 2 

to1 is not equal to F 3 to1 plus F 4 to1; this from the definition itself. You can see that 

this is not true, F 2 to1 is not equal to F 3 to1 plus F 4 to1; please don’t make this 

mistake. The additive relation which we can use is F1 to 2 is equal to F1 to 3 plus F1 to 4 

and this follows from the physical meaning of shape factor.  

 

Radiation going from to1 intercepted by 2 if 2 consists of 3 and 4, radiation going from1 

towards 3 and from1 towards 4 - the sum of the 2 fractions must be equal to the first 

fraction F1 to 2. So keep this in mind - the first relation is valid, the second is not. The 

first one is called the additive relation so these are various relations between shape factors 

that we have given and the advantage will be obvious from various situations which we 

have to consider.   

 

Now, we will do some problems in which we calculate shape factors for a variety of 

situations so that you get used to using these relations. I am going to do some problems; 

so the first problem I am going to do is following. Let us do the following problem.  



 23 

(Refer Slide Time: 44:38)  

 
 

Calculate the shape factor F 1 to 2 between a small area A1 and a parallel circular disc 

A2. Here is the small area a1; let me just shade it in red, it is a small area, differential area 

A1 and parallel to it a circular disc A2 is like this. So we have, let us say this table, on this 

table I have a circular disc. At the centre of the disc, let me draw a perpendicular in the 

centre of this disc and go up a certain distance h. At that distance h, consider a small area 

A1 which is like a differential area parallel to the plane of this table; that is what we are 

talking about.  

 

We would like to calculate F 1 to 2; we are going to use obviously the formula which we 

derived for shape factor between a small area A1 and a large area A2, we are going to use 

that formula. So what is the formula? Let me just put that down  
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For such a situation, we know F1 to 2 for the case; this case, this is a small area F1 to 2. 

If you go back in your notes, you will see it is nothing but the integral over A2 cosine 

beta1 cosine beta2 divided by pi L squared dA2 - that is our expression. Now let me go 

back to the sketch; here we must take our dA2 in this case, we have symmetry, we want 

the radiation coming from 1 which falls within this c1. So since we have symmetry for 

dA2, I can take a ring of thickness dr at some radius r. We have got symmetry all over; I 

don’t have to take dA2 as r d theta dr in cylindrical, in polar coordinates; I can take ring 

of radius at a radius r of thickness dr. So my dA2 will be 2 pi r dr. Let us take that as our 

dA2, so take dA2 to be, let me write that down - take dA2 because of symmetry, we will 

take dA2 to be 2 pi r dr and therefore I can now perform the integration.  

 

I say the distance between the 2 surface is h and the semi vertex angle, let me again show 

the sketch, I will say that the distance between the 2 surface is h the semi vertex angle 

subtended by this disc circular disc at A1 is alpha. Now using our nomenclature if I join 

A1 to dA2 the distance between the 2 will be the capital L which we have in our formula; 

this will be capital L and the angle made by this line joining A1 to dA2 and the normal; 

then 2 normals will be parallel to each other because the 2 surfaces are parallel to each 
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other and the angles, this will be beta1 here and this will be beta2 here and they will be 

equal in this case.  

 

So, let us substitute into our expression; now we will get F1 to 2, we are going to express 

everything in terms of the angle as the variable beta1. So we will get F1 to 2 is equal to 

cosine beta1 the second beta2 equal to beta1 so I can write it also as cosine beta1 divided 

by pi. Now instead LI we will write L as h - the distance between the 2 surfaces divided 

by cosine of beta1 the whole squared because beta1 is my variable and then for 2, for dA2 

I will write 2 pi for r I will write h tangent beta1 that is r and for dr I get by differentiating 

h tangent beta1, I will get h secant squared beta1 d beta1 - that is my expression.   

 

I will have to integrate this from 0 till the semi vertex angle which is alpha; so I will 

integrate this from 0 to alpha that is over the whole area then I will cover the whole area 

of the disc. If I do that now, I am skipping the details here you can do the simplification. 

You can see that the cosine beta1s will cancel out quite a bit, the pis will cancel out quite 

a bit, etcetera but all this - it is very easy to show that this will reduce to nothing but the 

integral 0 to alpha sine beta1 cos beta1 d beta1. Very simple; you can do that in yourself 

and if I perform the integration and put in the limits this will reduce to sine squared alpha.  

So this is an example of the calculation of shape factor between a small area A1 and a 

parallel disc A2; it is a very simple example just to illustrate how to pick an area dA2 and 

to do the integral. Now let us go on to another situation; I would like to calculate the 

shape factor using the graphs which I showed you earlier. So let us pick another problem. 

We are going to do the following.   
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I will just state the problem today; problem is the following. We have 2 rectangles like 

these, this is one rectangle, surface 1 and this is the second rectangle, surface 2. These are 

2 rectangles F 1 to 2 dimensions are given, this is 1 meter this is 1 meter, this is 4 meters 

and this is also 1 meter. So these are 2 rectangles - 1 and 2; they are at right angles to 

each other but they don’t have a common edge. We would like to get F 1 to 2. Now mind 

you, I cannot read this off directly from the graph which I had earlier for 2 rectangles 

with a common edge. In that case, in that situation, remember we had the common edge 

situation here; we don’t have a common edge – F 1 to 2 are at right angles but don’t have 

a common edge.  

 

Suppose I call this area, this rectangle as surface 3 and I call 1 and 3 together, 1 plus 3 

together as 4. Now what can I read from the graph, graphs which I showed you earlier; 

we can from those graphs get F 3 to 2, this is known or 0 F 2 to 3; similarly we can get F 

4 to 2 or F 2 to 4; these are available to us. So I need to express F 1 to 2 in terms of these 

quantities and that is what we can do very easily; we can say F 1 to 2 is equal to A 2 by 

A1, F 2 to1 here is my reciprocal relation which from the additive relation is nothing but 

A 2 by A1 F 2 to 4 minus F 2 to 3.   
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So I use first the reciprocal relation, then the additive relation and when I do that I have 

expressed F 2 to F 1 to 2 in terms of F 2 to 4 and F 2 to 3 which I can now read offf from 

the graphs which have calculation, which have been done earlier which I showed to you. 

So from that read offf these 2 values for this case; I am telling you what if you read them 

off? You will get the first one to be .34. The second one will come out to be .27 and A 2 

by A 1 is obviously one in this case so you will get F1 to 2 is equal to .07.  

 

I want you to do this yourself; that means for bit these cases for F 2  to 4 and F  2  to 3 

calculate L by w and L 2  by w then go to those graphs, read off the values of the 2 shape 

factors F  2  to 4 and F  2  to 3 and then you will get F  1  to  2  equal to .07. So I am 

leaving that last part for you to do; to illustrate the whole idea is to illustrate how those 

graphs can be used for calculating shape factors for other situations not corresponding 

exactly to the situation of those graphs. Now we will stop here today.   


