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We now turn our attention to the directional nature of thermal radiation and in that 

context we are going to define 2 terms - solid angle and radiation intensity.  
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So, let us define these 2 terms – first solid angle and then intensity of radiation. Now 

consider some area A2 which is drawn here - any arbitrary area, it may be flat, may be 

curved; doesn’t matter - some area A2. We would like to find out the solid angle 

subtended by A2 at the point dA1. This is the area A2; let me write it in bigger letters - A2 

and we would like to find out the solid angle subtended by A2 at d A 1 at a differential 

area d A1. So what we will do is the following - join the perimeter of A2 to the point dA1. 

So you will get a c1 as is being seen here; some kind of a c1 will be obtained. We will get 

a c1 like this; then with center at dA1 draw a sphere of unit radius, draw a sphere of unit 

radius with center at dA1. 
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Now the c1 which we have drawn earlier will intersect this sphere of unit radius and let 

us say that on the surface of this sphere of unit radius, the c1 cuts out an area A; let me 

repeat - let us say the c1 cuts out an area A on the sphere of unit radius which we have 

drawn with center at dA1. The solid angle subtended by A2 at dA1 is numerically equal to 

A; the solid angle subtended by the area A2 at the point dA1 is numerically equal to the 

area A. So let me now read out the definition which I have described to you - the 

definition of solid angle. 
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We use the symbol omega for it and say construct a conical surface with vertex at dA1 

passing through the perimeter of A2. What I said earlier; the solid angle subtended by the 

area A2 at the differential area dA1 that is, that the point dA1 is numerically equal to the 

area A of the portion of the surface of a sphere of unit radius centre at dA1 which is cut 

out by the conical surface. This is the definition which I have described to you and in 2 

dimensions the unit of an angle is radians, in 3 dimensions the unit of an angle is 

steradian. So keep that in mind; so this is how we define the term solid angle.  

 

Now, let us take a, just to illustrate ideas, let us take the example of a, let us say I take the 

example of a hemisphere.  
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Take the example of a hemisphere; consider a hemispherical surface, consider a 

hemispherical surface A2 and a differential area - an elementary area dA1 at its centre. 

Let me draw that; suppose now I have a, let us say this is a hemispherical surface and this 

is the hemispherical surface which I will call as A2 and the plane surface which is closing 

it - let us say, let us say the plane surface closing it at the bottom we will call as B and at 

its centre here, let us say this is dA1. So A2 is a hemispherical bowl, dA1 is at the centre 

of that hemispherical bowl. What is the solid angle subtended by A2 at dA1? Now it is 

quite obvious that if I were to draw a sphere of unit radius with centre at dA1 then the 

area cut out on that sphere of unit radius is going to be 2 pi by the c1 which is found by 

joining the perimeter of A2 to dA1. Therefore the solid angle subtended, the solid angle 

subtended by A2 at dA1 will be equal to 2 pi; 2 pi will be the area cut out on the surface 

of a sphere of unit radius centre at dA1. 

 

Now let me change the example little - I say suppose the area dA1 or the point dA1 

instead of being located at the centre let us say it is located somewhere else on this plane 

surface B. Let us say this is dA1, let us say this is dA1; now I ask you the question if this 

is dA1, what is the solid angle subtended by A2 at this red dA1? What is the solid angle 

subtended by A2, the hemispherical ball A2 at this red differential point, differential area 
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dA1 instead of being at the centre and you should be able to tell the answer yourself. Now 

let us go on; we would next like to derive an expression for the solid angle subtended by 

a differential area dA. Suppose I have some differential area dA which I have shown 

here. 
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In spherical coordinates, suppose I have some differential area dA which I am showing 

here in a spherical coordinate system here like this. This is dA shown in a spherical 

coordinate system; I would like to know what is the solid angle subtended by dA in 

spherical coordinate system. Now this is a typical spherical coordinate system - r is one 

coordinate, the radius r from the centre to the area dA. psi is the angle from the measure 

from the vertical which is called the zenith angle and psi - this is psi - and phi is the as 

azimuth angle measured in a horizontal plane 0 to 2 pi; phi varies from 0 to 2 pi. So 3 

coordinates in a spherical coordinate system are r the radius vector, the radius psi and phi 

radius, zenith angle, azimuth angle; now the differential area dA is r squared sin psi d psi 

d phi. Very easy to do by simple trigonometry; I want show that to you.  

 

So, the differential area dA is r squared sin psi d psi d phi; now what is the solid angle 

subtended by dA at the centre? It is very easy to see – it is nothing; it is going to be 
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nothing but dA upon r squared because r is the radius and we want the area cut out on a 

sphere of unit radius. So dA upon r square will be the solid angle subtended by dA at the 

centre; so d omega that is the solid angle subtended by dA at the centre is equal to dA 

upon r square and we know that dA is r square sin psi d psi d phi. Therefore this is equal 

to sin psi d psi d phi; so we have a nice simple expression for a differential solid angle in 

spherical coordinates, a differential solid angle d omega in spherical coordinates is equal 

to sin psi d psi d phi where psi is the zenith angle and phi is the azimuth angle and we 

will use this shortly.  

 

Now, let us define the second term which I mentioned; what was the second which I 

mentioned just a few minutes ago? The second term which I mentioned was intensity of 

radiation, radiation intensity or intensity of radiation. 
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To be more specific we will call it total intensity of radiation; total means summed over 

all wavelengths - the usual definition, total means summed overall wavelengths. The total 

intensity of radiation in a given direction i is equal to the radiant flux passing in the 

specified direction per unit solid angle, radiant flux passing in the specified direction per 

unit solid angle. What we mean is the following - suppose I have a surface like this and it 
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is emitting radiation in all directions like this in normal direction at an angle, all 

directions given by a hemisphere, emitting radiation in all directions given by 

hemisphere. 

 

If I am taking any element on the surface, that element is emitting radiation in all 

direction of the hemisphere. I want the intensity in a particular direction so I say to 

myself - suppose I have some direction, some specific direction like this which I will 

draw in red. I want the intensity in this direction so in this direction, about this direction 

we, in which I am interested let us draw a small elementary solid angle d omega like this. 

Let us say this is an elementary solid angle d omega and let us say through this 

elementary solid angle d omega the radiation which is being emitted from this surface is 

de. Therefore i is nothing but de d omega; the radiant flux emitted per unit solid angle in 

a particular direction de upon d omega. 

 

Or, another way of looking at intensity of radiation is to say - it is that quantity which 

when integrated over all directions of a hemisphere will give me the emissive power of a 

surface. So let us put it in the reverse by here; therefore e is nothing but the integral i d 

omega where the integration is carried out over all directions encompassed by a 

hemisphere. So there are 2 ways of looking at I; one is it is the radiant flux so many watts 

per meter square per unit solid angle in a given direction or it is that quantity, i is that 

quantity which when integrated over all directions encompassed by hemisphere will give 

me the emissive power of a surface.  

 

And the word total implies that we are talking about something which is summed over all 

wavelengths; intensity means you are summing, you have to sum it over all directions to 

get the emissive power.  
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Thus proceeding from the earlier expression for e is equal to integral i d omega, now 

instead of d omega I will write sine psi d psi d phi because that is my expression for the 

elementary solid angle; I will derived it earlier in spherical coordinates and if I want all 

directions of a hemisphere, integrate from 0 to pi by 2 to cover all the variation, the 

zenith angle and from 0 to  2 pi to get the variation of the azimuth angle. Both the 0 to pi 

by 2 covers the vertical in the, from the zenith vertical direction down to the horizontal 

plane and 0 to 2 pi covers the azimuth angle in a horizontal plane. So, all the directions of 

a hemisphere are covered when I do this integration. So I say e is equal to the double 

integral 0 to 2 pi, 0 to pi by 2 i sine psi d psi d phi – that is our, one way also of looking at 

the relation between e and I; e is the emissive power, i is the intensity of radiation.  

 

Now, it so happens that for many surfaces, the intensity of radiation in any direction can 

be related to the intensity in the normal direction by a simple law which is called as 

Lambert’s law and Lambert’s law simply says i is equal other i n cosine of psi but we are 

saying in effect is the following. If I have a surface and if this is the normal direction to 

the surface, the intensity in the normal direction is i n, the intensity in any direction other 

direction is i. We, and let us say that direction makes an angle, zenith angle psi with the 

normal; then what we are saying is - Lambert’s law simply says i the intensity in any 



 8 

direction is equal to i n the intensity in the normal direction multiplied by the cosine of 

psi. Such a surface which is defined by Lambert’s law which relates intensity in any 

direction to intensity in the normal direction, such a surface which says that Lambert’s 

law is valid is called a diffused surface. 

 

So, we say and many real surfaces to a large extent obey this law; therefore we will use it 

often as an idealization. Now suppose we substitute Lambert’s law into the expression 

which we had earlier - e is equal to integral 0 to 2 pi 0 to pi by 2 I sin psi d psi d phi. 

Instead of i let us write i n into the, into i n into the cosine of psi; I think we forgotten 

something here. We should have had i n into cosine of psi, I have forgotten that here. i n 

into cosine of psi into sine of psi uh into d psi d phi, now that is correct. If you perform 

this integration, take the i n outside and perform then the double integral over psi and phi; 

it is very to show that you will get pi. So the net result of the integration is simply to say e 

is equal to pi times i n. 

 

We have got a nice easy relationship, simple relationship between the emissive power of 

a surface and the intensity in the normal direction. So let me repeat, first we had a general 

expression for e. e is equal to the double integral I sine psi d psi d phi; it is a general 

expression. Lambert’s law relates the intensity in any direction to the normal intensity; 

substituting Lambert’s law that is assuming that the surface is diffused and performing 

the integration we get e is equal to pi times i n. That means we are saying the intensity in 

the normal direction multiplied by pi is equal to the emissive power of a surface if the 

surface is diffused. e is equal to pi times i n if the surface is diffused and we will make 

this assumption. It is made by most people; we will make this assumption.  

 

So, we will always relate the emissive power to the normal intensity by this expression 

assuming Lambert’s law to be valid. So now let us do a simple problem again just to 

illustrate ideas; let us do the following problem. 
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Let us say, let us do the following problem, let us say I have a surface; some surface at, a 

surface at a temperature of 800 Kelvin. Take some element on that surface - some 

elementary area on the surface - and we know that it is going to be emitting radiation in 

all directions of a hemisphere like this. It is emitting radiation in all directions of a 

hemisphere; now let us assume the surface emits, assume surface emits radiation in a 

diffused manner or assume surface is diffused. And let us say that the emissive emissivity 

of the surface is .08; it is a surface of 800 k with an emissivity of .08, it emits in a 

diffused manner. Calculate first of all, calculate a, calculate the value of i n - the intensity 

in the normal direction, b - radiant flux emitted within the cone, within the cone 0 less 

than psi less than 50 degrees, 0 less than phi less than 2 pi.  

 

So, we would like to know how much radiation is being, how much radiant flux is being 

emitted within the cone which makes, has a semi angle of 50 degrees. So let me draw 

that; let us say this is 50 degrees here, this is the 50 degree cone. So this is 50 degrees 

within this cone, within this cone, how much is the radiant flux going outwards? That is 

what we would like to know, not all of it but what is going out within the cone. We want 

to, whole amount that is going over the whole hemisphere that is obviously nothing but 
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the emissive power of the surface. We don’t want that, we want only the amount that is 

within this cone making an angle of, semi angle of 50 degrees.  
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So let us do the problem; first of all from the Stefan Boltzmann law, from Stefan 

Boltzmann law, S B law, e is equal to epsilon times eb is equal to .08 that is the 

emissivity multiplied by 5.670 into ten to the minus 8 multiplied by 800 that is degrees 

Kelvin to the power of 4. So that comes out to be 1857.9 so many watts per meter square. 

We want first of all the value of i n; we know very well that if it is a diffused surface - a 

surface which emits in a diffused manner - i n is nothing but e divided by pi. So that 

comes out to be 591.4 so many watts per meter square steradian so that is i n. That is the 

first thing that we are looking for - the value of i n. The second thing we are looking for 

is the radiant flux being emitted in the cone - 0 to 0 less than equal to psi less than equal 

to 50; so radiant flux in cone 0 less than psi less than 50 is equal to the double integral 0 

to 2 pi that is integrating over the whole azimuth angel 0 to 50 that is the zenith angle i n 

cosine psi sine psi d psi d phi.  

 

So, a note earlier - when we had integrated, we had integrated over the whole 

hemisphere. So we had 0 to pi by 2 and 0 to 2 pi, now I want the radiant flux only in this 
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cone; so the first, the integral over psi only from 0 to 50, the integral over azimuth angle 

is over the whole direction encompassing all horizontal plane going over the whole 

horizontal plane. Now this is an extremely trivial integral to do. All that we will get is, 

this is the equal to 2 pi i n the integral 0 to 50 sine 2 psi by 2 d psi and that comes out to 

be 1090.3 watts per meter squared. That is the second answer we are looking for; that is 

the radiant flux emitted within the cone which has a semi angle of 50 degrees. 

 

So, this is an illustration of the formula that we just derived for intensity of a radiation 

and for solid angle. Now let us move on; we have defined 2 terms - solid angle and 

radiation intensity and in the process also defined what do you mean by diffused surface 

saying that it relates intensity in any direction to the intensity in the normal direction. 

Now we go on to another law which we are not going to prove but which is in fact a very 

important law and that law is Kirchoff’s law.  
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Kirchoff’s law states that the monochromatic emissivity of a surface is equal to its 

monochromatic absorptivity if the surface emits in a diffused manner. Kirchoff’s law is a 

very powerful statement relating the emission characteristics of a surface with the 

absorption characteristics of surface. Kirchoff’s law I repeat is a very important law - 
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relates emission characteristics to absorption characteristics of a surface -and it states if 

the surface is diffused, epsilon lambda is equal to alpha lambda. If a surface, if emits in a 

diffused manner epsilon lambda is equal to alpha lambda; this is, we are not going to 

prove this law but I will ask you to take it as correct.  

 

Now, a consequence of this is that if in addition to being emitting in a diffused manner, if 

I say, if the surface is also gray, if the surface is also gray it follows that epsilon is equal 

to alpha emissivity is equal to absorptivity. And this is quite easy to show; if epsilon 

lambda is equal to alpha lambda and the surface is gray then epsilon becomes equal to 

alpha. Let show, that is quite relatively easy to show. Let us for instance say take epsilon; 

let us take the quantity epsilon that is the emissivity of surface. What is epsilon equal to? 

epsilon is e upon eb that is e is the emissive power of the surface, eb is the emissive 

power of a black surface at the same temperature. e is nothing but the integral 0 to 

infinity; e lambda d lambda integration over all wavelengths upon eb that is nothing but 

the integral 0 to infinity epsilon lambda eb lambda d lambda upon eb. Now epsilon 

lambda is a constant. 
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epsilon lambda is a constant; we have told that epsilon lambda is a constant; therefore 

this is nothing but, I can take epsilon lambda outside the integral. epsilon lambda 0 to 

infinity eb lambda d lambda upon eb - that is nothing but epsilon lambda eb upon eb and 

that is nothing but a epsilon lambda. So the emissivity is equal to the monochromatic 

emissivity the moment I assume that the surface is gray. 

 

Similarly the alpha, similarly, it can be shown that alpha the absorptivity is equal to the, 

also equal to epsilon lambda if the surface is gray and diffused. Therefore, epsilon is 

equal to alpha; I am not showing the second that alpha is equal to epsilon lambda but you 

can show it in the same way that we showed earlier for epsilon. Say alpha is equal to h a 

upon h; then go ahead and make h a as, describe it in terms of an integral and use the fact 

that alpha lambda is epsilon lambda which Kirchoff’s law states and you can show alpha 

is nothing epsilon lambda. So therefore, in effect to we are saying - let me repeat again 

Kirchoff’s law states epsilon lambda is equal to alpha lambda if the surface emits in a 

diffused manner. In addition if the surface is gray then it can be shown that epsilon is 

equal to alpha and that is a very powerful statement. 

 

We will generally make the assumption that the surface is diffused and gray - a real 

surface that we are dealing is diffused and gray; so a surface for which both the equations 

that is epsilon lambda is equal to alpha lambda and epsilon equal to alpha, a surface for 

which both equations hold is called a diffused gray surface. We will assume that all real 

surfaces, all non black surfaces that we are dealing with are diffused, gray; we will make 

that assumption and therefore we will always assume epsilon equal to alpha and epsilon 

lambda equal to alpha lambda. It is a powerful law which will help us quite a lot in 

deriving formulae and simplifying our derivations as we go along.  

 

Now we have so for - let me again recapitulate for a moment - we have talked about the 

emission characteristics of surfaces and defined terms like emissive power, emissivity, 

monochromatic emissive power and monochromatic emissivity and we have defined the 

laws of black body radiation emissions from black bodies. Secondly, we have talked 

about the absorption characteristics of surfaces; defined quantities like absorptivity, 
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monochromatic absorptivity and similarly analogous quantities is for reflectivity and 

transmissivity.  

 

Then, we have looked at the directional aspect of radiation today, defined quantities like  

solid angle and intensity of radiation that is radiation in a particular direction. We have 

related intensity in the normal direction to the emissive power of a surface by making the 

assumption that Lambert’s law holds true that is the surface emits in a diffused manner. e 

is, i is equal to i n cosine of psi. Finally, we have stated Kirchoff's law; we stated that the 

monochromatic emissivity of a surface is equal to the monochromatic absorptivity if the 

surface emits in a diffused manner. We have gone on to show that if in addition the 

surface is gray then emissivity is equal to absorptivity. 

 

So, now that we know how to deal with emissions from a surface and the absorption 

characteristics of surface, we are ready to talk about heat exchange by radiation between 

2 surfaces at 2 different temperatures; now we are ready because a surface emits, a 

surface absorbs. So we are now in a position to calculate heat transfer by radiation 

between 2 surfaces. So let us do that now - we are going to study the heat transferred by 

radiation between 2 surface elements. 
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So, to simplify matters, first instead of taking finite surfaces we will take 2 surface 

elements and to also simplify matters we will assume that they are black - that is our 

initial assumption mind you. Later on we may, we will be able to deal with other 

situations.  

 

So, first now let us calculate the heat transfer by radiation between 2 black surface 

elements; let us say the black surface elements are dA1 - this is one black surface element 

- and dA2. They are 2 black surface elements, 2 surface elements arbitrarily located 

somewhere in space.d A 1 is at a temperature T1, an absolute temperature T1 and dA2 is 

at an absolute temperature T2; it is maintained, both of them are maintained at these 

absolute temperatures T1 and T2. So obviously dA1 is going to emit radiation by virtue of 

being at T1, dA2 will be going to emit radiation by virtue of being at T2.  

 

Some of the radiation emitted by dA1 is going to go towards dA2 and similarly some of 

the radiation emitted by dA2 is going to go towards dA1. That radiation is going to be 

absorbed by dA2 and dA1; the heat transfer by radiation between the 2 elements is the 

difference between those 2 quantities. That is what is emitted by dA1 going towards dA2 

and absorbed by dA2 and what is emitted by dA2 going towards dA1 and absorbed by 

dA1. So to calculate the net radiative heat exchange between dA1 and dA2 – that is our 

problem.  

 

Now let us do that; let us solve, get an expression. First of all let me consider the 

radiation emitted by dA1 and going towards dA2. 
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So, I ask myself first, what is the intensity of radiation i emitted by dA1 in the direction 

of dA2? What is the intensity of radiation? Let us go back to the sketch for a movement; 

define some symbols before we put down this expression. Let me shows a sketch again. 

These were the areas dA1 and dA2 at temperature T1 and T2; let us say the line joining 

these 2 areas, this is a line joining these 2 differential areas and let us say its length is L, 

is denoted by capital L and that the normal to dA1, the normal to dA1 makes an angle 

beta1 with L. The normal to dA2 makes an angle beta2 with L. So beta1 and beta2 are the 

angles made by the normals to dA1 and dA2 with the line joining dA1 and dA2; that is the 

nomenclature we will adapt.  

 

Now let us go back with this nomenclature - intensity of radiation i emitted by dA1 in the 

direction of dA2 is going to be equal to, first of all what is the emissive power of dA1? 

The emissive power of dA1, it is a black surface, so by this Stefan Boltzmann law, it is 

sigma T1 to the power of 4 eb1. If I divide this by pi, I have got the intensity of radiation 

emitted by dA1 in the normal direction. I want the intensity emitted by dA1 in the 

direction of dA2 so I will use Lambert’s law and say multiply by cosine beta1 - that is the 

intensity in the direction 2.  



 17 

Next, what is the solid angle d omega subtended by dA2 at dA1? It is nothing but, first of 

all take their area normal to the line joining that to that is normal to L; areas of dA2, 

projected area of dA2 normal to L, it is going to be dA2 cosine beta2 – that is the area of 

dA2 normal to L. I want the solid angle so obviously I want to know how much will be 

cut out on a sphere of unit radius; the area of a sphere is 4 pi r square. So if I divide this 

by L square, then I get the area cut out on a sphere of unit radius; so this is d omega.  

Therefore, I know the intensity of radiation emitted by dA1 in the direction of dA2; I 

know the solid angle subtended by dA2 at dA1. Therefore, rate at which radiation emitted 

by dA1 flows towards dA2 - that will be nothing but is equal to I the intensity multiplied 

by d omega multiplied by the area dA1. i is sigma T1 to the power of 4 upon pi cosine of 

beta1; that is, i d omega is dA2 cosine of beta2 upon L square and finally multiplied by 

dA1. That is the expression for the rate at which radiation emitted by dA1 flows towards 

dA2, rate at which radiation emitted by dA1 flows towards dA2 is given by this 

expression. Let us clean it up to little; I can rewrite that as same expression.  
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I can say that is equal to cosine beta1 cosine beta2 dA2 divided by pi L squared the whole 

thing multiplied by sigma T1 to the power of 4 dA1; I have just rewritten the same 

expression in another manner and I am going to the quantity within the curved brackets. I 
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am going to indicate by the symbol dF1 to 2 and say that is equal to dF1 to 2 sigma T1 to 

the power of 4 dA1 – that is the rate at which radiation emitted by dA1 flows towards 

dA2.. And all this is absorbed by dA2, all this is absorbed by dA2; why is that? Because 

dA2 is a black surface, a black surface absorbs. So this is the expression where, let me 

indicate the symbol dF1 to 2 is equal to cosine beta1 cosine beta2 dA2 divided by, divided 

by pi L square. That is the quantity dF which we have defined as dF1 to 2. 

 

dF1 to 2 is called the shape factor, is called the shape factor of dA1 with respect to dA2; 

dF1 to 2 is called the shape factor of dA1 with respect to dA2. It is also referred to as the 

shape factor; let me underline that word. This is called the shape factor also referred to as, 

also referred to as the view factor, referred to as view factor; it is sometimes called as an 

angle factor, sometimes called as a configuration factor. The shape factor is also 

referenced to as a view factor, angle factor or a configuration factor. 

 

Now what does this, what does it mean really? That is important; the shape factor if you 

go back to the definition here is the fraction of the radiant heat flow rate from dA1 which 

is intercepted by dA2. It is, the shape factor is going to be a number between 0 and 1; it 

stands for that fraction of the radiant heat flow rate emitted from dA1 which is 

intercepted by dA2. So dA1 is like this - some elementary area emitting in all directions, 

dA2 is somewhere here, so a certain amount of that emitted radiation goes towards dA2. 

The fraction out of the total amount that is emitted over whole hemisphere which goes 

from dA1 towards dA2 is called the shape factor of dA1 with the respective dA2. So it is 

always a number between 0 and 1 – that is the physical meaning and you must never lose 

sight of that. 

 

So, now that we have this, let us go on; we haven’t yet got the final expression. We know 

what is the radiation emitted by dA1 which is flows towards dA2 and is absorbed by dA2 

so many watts.  
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Similarly, let us do the reverse calculation now; similarly rate at which radiation emitted 

by dA2 flows towards dA1 and is absorbed by dA1 because dA1 is black and is absorbed 

by dA1. Similarly it can be shown this is equal to sigma by pi cosine beta1 cosine beta2 

dA1 dA2 divided by, divided by L squared into T2 to the power of 4 which we can write 

as dF2 to 1; again define a shape factor into sigma into T2 to the power of 4 into d A2. 

Note again shape factor dF2 to 1 where dF2 to 1 is equal to cosine beta1 cosine beta2 dA1 

divided by pi L square divided by pi L squared - that is the shape factor dF2 to 1.  

So you got 2 expressions - rate at which radiation emitted by dA1 flows towards dA2 and 

is absorbed by dA1, we have a second expression - rate at which radiation emitted by dA2 

flows towards dA1 and is absorbed dA1.  
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Therefore, the net radiative exchange rate, the net radiative exchange rate which we will 

call as dq12 between dA1 and dA2 - this is what we are looking to calculate. The net 

radiative heat exchange rate, heat exchange rate dq12 between dA1 and 2 is equal to rate 

at which radiation emitted by dA1 is absorbed by dA2 minus rate at which radiation 

emitted by dA2 is absorbed by dA1. So that is equal to - put in both the expressions in 

sigma by pi cosine beta1 cosine beta2 dA1 dA2 upon L square into T1 to the power of 4 

minus T2 to the power of 4 which is equal to, if I want to use the first shape factor dF1 to 

2 it is equal to dF1 to 2 sigma T1 to the power of 4 minus T 2 to the power of 4 into dA1 

or using the second shape factor - dF2 to 1 sigma T1 to the power of 4 of minus T2 to the 

power of 4 dA2. So all these are equivalent expressions which we have put down for the 

net radiative heat exchange rate between dA1 and dA2 and mind you again I keep the 

physical meaning of shape factor in mind. 

 

That is important - dF1 to 2 stands for the fraction of radiation emitted from dA1 which 

towards dA2 and is absorbed by dA2 in this case because dA2 is black; dF2 to 1 similarly 

is this fraction of the radiation emitted from 2 which goes towards dA1. So note from the 

definition that dF1 to 2 dA1 is equal to dF2 to 1 dA2. Keep that in mind; so we have now 
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based on our knowledge of emission characteristics of a surface and our knowledge of 

intensity of radiation, that is radiation going in a particular direction.  

 

Today, we have derived an expression for the net radiative heat exchange rate dq1 to 2 

between two arbitrarily oriented differential areas dA1 and dA2 at 2 different 

temperatures T1 and T2. We know what is the net radiative heat exchange rate between 

them by calculating what is emitted by one and absorbed by the other; what is emitted by 

two and absorbed by one, that’s what we have got. In the process we have defined a very 

important terms called the shape factor which is the fraction of the radiation emitted by 

one surface which is, which flows to the direction of the other surface. 


