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So, welcome to the ninth lecture of cryogenic engineering of this NPTEL program. My 

earlier lecture, I will just take a review of my earlier lecture; what we talked about in the 

earlier lecture, it was regarding gas refrigeration and gas liquefaction introduction. 
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So, what we talked about was basics of refrigeration, liquefaction. In order to liquefy 

particular gas, you have to low the temperature to boiling point of this particular gas. 

And therefore the importance or the procedure how to reach those lower and lower 

temperatures is very important. And the performance of the refrigerator could be 

calculated by COP or the coefficient of performance parameter, and importance of 

Carnot COP was also mentioned. It serves as an ideal COP or the maximum possible 

COP to reach a particular temperature. 

We talked about various mechanisms to get lower and lower temperatures. These 

temperatures can be obtained by throttling mechanism, heat exchangers or compression 

expansion systems. We talked about all these three possibilities and we also talked that a 

complete system may come out as a combination of all these parameters. We talked 



about a definition of a refrigerator, liquefier and a combination of these two systems. We 

talked that refrigeration is a normally a close cycle process; that it is working fluid never 

leave the cycle. Well liquefier can be called as a open cycle process, because the working 

fluid itself gets liquefied. And whatever liquid we collect the same amount of the gas has 

to be added to count of the deficit. 

We talked that J - T expansion is an isenthalpic process; enthalpy gets conserved during 

this process. And the initial temperature of the gas should be less than the T inversion 

temperature to have a cooling effect. We talked about that, every gas has got a 

characteristic inversion temperature. And in order that after expansion by J - T expansion 

after isenthalpic expansion if it has to result in lowering of temperature, then the initial 

state of the gas should have temperature less than inversion temperature of that particular 

gas. We also saw that for ideal gas mu J - T or del T by del p at constant enthalpy is 

equal to 0. That means if the gas is subjected to isenthalpic expansion, it should not 

result in any lowering of temperature or even in heating of the gas, because mu J - T is 

equal to 0 for ideal gas.  
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In this particular lecture, I am continuing with gas liquefaction and refrigeration systems. 

What we are going to talk about now is J - T expansion of real gas; what we talk in the 

earlier lecture was J - T expansion of ideal gas. Let see how the real gas behaves when it 

is subjected to J - T expansion. Then we will talk about isentropic expansion; then we 



will compare the J - T expansion and isentropic expansion. And then we will see the first 

cycle which is ideal thermodynamic cycle which is use for gas liquefaction all right, this 

is what we will try to cover in this particular lecture. 
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We have seen that work input is needed to generate and maintain low temperatures. We 

have seen that the first law and the second law tells us that we have to put in some work, 

we have to put in some efforts in order to generate low temperature and to maintain the 

low temperature. We have seen that as T L decreases as lower and lower temperature if 

we want to reach, the Carnot COP decreases stating that more work input is required to 

maintain very low temperature. 

If you remember the last lecture, we had talked about watt of power input per watt of 

refrigeration, and we found that the watt of power required per watt of cooling effect 

required increases as we go down lower and lower temperatures; if you want to reach 

lower and lower temperature your work input increases. Hence, a knowledge of 

performance of various refrigeration liquefaction cycle is necessary to design the system 

with maximum COP. See ultimately important thing is to our maximum COP or 

maximum efficiency, and therefore one has to understand what cycle one should use in 

order to reach particular temperature or in order to liquefier particular gas. This is very, 

very important considering the fact that efficiency and COP are very important functions 



of what cycle you choose in order to refrigerate in order to reach lower temperatures or 

to liquefier particular gas.  
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Now, let us understand what is Joule - Thompson coefficient is for the real gas, and let us 

start with the definition of enthalpy which is nothing but some of internal energy u plus 

pv work, and mathematically I can write h is equal to u plus pv. So, by definition mu J - 

T or J - T expansion coefficient is nothing but del T by del p at constant enthalpy. And if 

I split that it becomes del T by del h into del h by del p with a negative sign over here. 

This is what we have seen earlier and therefore, I will not go in the details of all this 

things.  

So, when I know now del h by del p I have to find at constant temperature and del T by 

del h at constant pressure. Substituting enthalpy h, we know h is equal to u plus pv and if 

I substitute this l h over here in the above expression of J - T coefficient what we will get 

is this mu J - T is equal to 1 by c p, because delta T by delta h is nothing but 1 by c p 

which we have seen earlier. And now I am putting the value of h as u plus pv, and 

therefore this expression becomes del u by del p at constant temperature plus del by del p 

of p v at constant temperature here. 

Now, this is the bracket will will decide whether mu J - T is positive which is required 

for cooling or negative which result in heating or is equal to 0 which will not result in 

cooling or even heating. See, in order that J - T expansion results in cooling, the bracket 



should always be negative. So, net result of this bracket should be negative. So that 

taking care of this negative, the whole thing becomes positive and in that case mu J - T is 

going to be positive. 
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So, this is the expression I am talking about, and what it has? It has got two parameters; 

del u by del p at constant temperature and del pv by del p at constant temperature. Now, 

let us talk about the first parameter that is del u by del p, because essentially the values 

what we get from del u by del p at constant temperature and del pi by del p of pv will 

decide what is the net sign of this bracket. The first term is the variation of internal 

energy which pressure at constant temperature. Now, this is nothing but this term 

represents departure from joules law. The joules law states that the internal energy is 

constant for a given temperature. And here we are talking about changes in internal 

energy with pressure when the temperature is maintained constant. So, this basically 

talks about how you are going away from the ideal gas right. The ideal gas will not 

accept these. That means, we are going away from ideality which means that we are 

taking into consideration the real effects of the gas and we are talking about real gas 

now. 

At lower pressures, when you expand the gas from higher pressure to low pressure and 

when we are talking about low pressures, the molecules are pulled apart. This is what 

happens in expansion process. This results in increase in the potential energy of the gas. 



So, whenever the molecules go apart, the potential energy increases, as a result the 

kinetic energy decreases, and as you know the kinetic energy decreases, because the total 

energy remains constant alright.  

So, when the kinetic energy decreases, kinetic energy directly proportional to 

temperature. So, as soon as the kinetic energy decreases, the temperature of the system is 

also decreases. That means, del u by del p when the pressure decreases, the del u by del p 

should result in increase of u value, because the potential energy of the system increases, 

and therefore this term del u by del p always becomes negative which helps in the 

reducing the temperature gas when the gas expands. Please understand that del u by del p 

therefore will always be negative and will always help in reduction of temperature when 

the gas is subjected to expansion, when the pressure of the gas reduces. This is true for 

the real gas also.  

(Refer SlideTime: 08:41) 

 

Now, we will talk about the second term. So now, if we talk about the second term, this 

second term is the most important thing and this term will decide if this bracket is going 

to be positive, negative or 0. The second term now it can be positive, negative or 0 and 

this represents now departure from Boyle’s law. Again you can see now, this is del by 

del p of pv at constant temperature. The Boyle’s law says that the product pv remains 

constant for a given temperature. Now, we say that we are talking about changes in the 

value of pv although the temperature remains constant with pressure changes. So, this is 



basically departure from the Boyle’s law where the non-ideality or the real gas comes 

into picture. 

Please look at this graph and here it talks about the pv variations verses pressure. And as 

you can see here, the pv variation for higher temperature, pv value decreases when the 

pressure decreases, and therefore, pv del pv by del p in this case is going to be positive. 

Well you can see as the temperature goes on lowering down, you can see that there is the 

variation in the curve and for some part you can find pv decreases, for some part the pv 

increases, and here comes the pv variation with pressure the sign changes. So, here in 

this case, the value pv decreases with a decrease in pressure saying that del pv by del p in 

this case is positive. 

Well if you come in this region, we understand that pv value increases when pressure 

decreases and in this region therefore, del pv by del p in this case is going to be negative, 

because there is a pv increase happens although the pressure decreases. So, in this case is 

going to be negative. And if we want to have cooling in this case, because you want mu J 

- T to be positive, we expect that del pv by del p should be negative which should help us 

it having mu J - T has a positive quantity. So, if we see at this variation, we can have two 

parts; one at the higher pressure and one is at a lower pressure. We can see at a higher 

pressure, the molecules are very, very squeezed. The molecule is already subjected 

different molecules are already subjected to very higher pressure, and therefore, they 

cannot be compress further.  

And what we can see now, hence, they are less compressible than Boyle’s law prediction 

in this case. When the compressibility of the gas is very, very less in this case, when they 

cannot be compressed further, the pv should not show an increase in this case. Because 

the pressure decreases, but the volume will not increase in this case in a proportional 

manner, because the gases are less compressible in the higher pressure region; that 

means even if the pressure is decrease, the value of the pv also shows decrease in this 

case, and therefore, in this region, if you expand the gas, this del pv by del p term is 

going to be positive in this case. That in pressure reduction happens del pv also reduces, 

and this is not going to help you in reduction of temperature or J - T cooling effect.  
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However, if you see the other half that is the second term is negative at lower pressures 

and lower temperatures. So, if we talk about this region now, we find in this region 

which is low pressure and low temperature; the gases are more compressible than 

Boyle’s law predictions right. Why see here, because now we are talking about lower 

pressure value. This is not a higher pressure value as it was in earlier case. We are 

talking about lower pressure values, and when I expand the gas from this pressure let us 

do up to this pressure. The pv product increases, because the volume increase will be 

there, and volume increase will be more, because the gases are more compressible in this 

region. And therefore, as soon as I expand the gas from higher pressure to low pressure 

in this case, the pv value increases, and therefore, del pv by del p in this case would be 

negative which will help in making mu J - T as positive. And therefore, if you expand the 

gas in lower temperature and low pressure region, it is always beneficial or it will always 

result in cooling when subjected to isenthalpic expansion. 

And this is where we found there are the temperature or the pressure above which it will 

not result in cooling when expanded; while in this case, the gas will result in cooling 

when expanded in a J - T expansion manner. So, for a real gas Joule - Thompson 

coefficient depends upon the relative magnitude of both this terms. So, what is this 

magnitude positive, negative or 0. This is always going to be negative, but what is the net 

result of this bracket will decide, if mu J - T is going to be positive or negative or when 



subjected to Joule - Thompson expansion, is it going to result in cooling or is it going to 

result in heating will be decided by this parameters.  
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Now, this was true when we talked about real gas and we talked about the enthalpy 

equation. Now, same thing could be understood when I am using a real gas equation or 

van der Waals equation. So, van der Waals equation of state for a real gas is given as 

this, which is p plus a by v square into v minus b is equal to RT where a and b are 

constants, and this a and b gives the measure of intermolecular forces which is what a is 

while, and size of the particle respectively the value of b denotes basically the size of the 

particles, which we say that the finite volume of value to this b and a value in this case. 

For ideal gas, we assume that both a and b is equal to 0, and therefore what we get is pv 

is equal to RT for ideal gas. If we rearrange this term, what you get is a p is equal to RT 

upon v minus b minus a by b square. You can do this exercise by yourself to derive this 

particular term.  
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Now, if I want to differentiate this term, real gas equation, van der Waals equation; upon 

differentiating the following equation at constant pressure, this is my equation, because 

the pressure remains constant in this case. I will get p is equal to RT v minus b and 

minus a by v square. If I differentiate I will get 0 here, because I am keeping pressure as 

constant and then I get this particular term. From where if I rearrange the term what I 

ultimately want to get is a value of del v by del T at constant pressure. This is the most 

important thing, because I would like to put this value in my earlier equation. See if I get 

del v by del T at constant pressure at this value, I will substitute this del v by del T at 

constant pressure in the J - T coefficient equation, this is the value and this my J - T 

coefficient equation. 
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So, here this del v by del T at constant pressure, I will put from here into this equation. 

And if I do that for real gas, what I get is this. Now, I will try to approximate these, if v 

is specific volume is very, very large as compare to the values of a and b. If I assume this 

and this is a very realistic assumption, if I do that then b by v will tend to be equal to 0, 

well this also tend to be equal to 0, and therefore, ultimately my expression for mu J - T 

comes like this - 1by c p 2a upon RT minus b. So, here the value of mu J - T is now 

determined by this particular equation, and the sign of mu J - T will be decided by this 

bracket - 2a upon RT minus b. As we know 1 by cp is always going to be positive, 

because c p is always a positive term.  
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So, what I understand now? For a real gas with large specific volume, I will have this 

equation, and if I want to have mu J - T to be more than 0, this bracket should be more 

than 0, and therefore, temperature should be less than 2a by Rb. If I want to be mu J - T 

to be less than 0 which means it is going to be result in heating in this case, I would like 

the temperature of the gas - initial temperature of the gas to be more than 2a upon Rb. 

And if I want mu J - T to be equal to 0 in that case, my temperature is going to be 2a 

upon Rb. In this sense, this is nothing but the inversion temperature for the gas at a given 

pressure. See, if my temperature is less than 2a upon Rb, my mu J - T is going to be 

positive and when expanded it going to be result in lowering of temperature. 

Well here, if the temperature is more than 2a upon Rb which is nothing but the inversion 

temperature for a particular gas; my expansion is going to result in heating in this case. 

Well this is going to be point where nothing will happen. And if a is equal to b is equal to 

0, ultimately everything gets reduced to the ideal gas, again in which case mu J - T is 

equal to 0. So, this essentially talks about what the values of inversion temperature 

would be for a particular gas depending on the values of a, b and r for those gases. This 

is the van der Waals equation basically would decide, what are the values of the 

inversion temperature for a particular gas at different pressures etcetera. One can based 

on this values, one can construct the inversion curve also.  
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See, if I want to plot isenthalpic line on a T – S chart, you can see this is the dome in 

which the liquefaction happens, temperature and entropy here. And you can see, suppose 

this is a room temperature at this point, the isenthalpic lines are like this. See, if I expand 

the gas from this high pressure isenthalpicaly, I will get this as delta T in this case, this 

minus this. But as you go down the temperature here, and if I expand the gas 

isenthalpicaly from this pressure to this pressure, my delta T in this case is much larger 

than what I get near room temperature. What does it tell? It shows that the drop in 

temperature obtain after isenthalpic expansion at lower temperature is very, very high. 

So, if I expand the gas at lower and lower temperatures, I am going to get bigger and 

bigger temperature drop if expanded isenthalpicaly. Why, because as I am going down 

and down I am reaching in a real gas state, I am going away from ideality. And therefore, 

my J - T expansion is going to be more and more prominent, I am going to get more and 

more real gas expansion, and in this case I am getting very large cooling when expanded 

isenthalpicaly all right. One should always have isenthalpic expansion when one goes 

away from ideal gas, and best way to go away from ideal gas is to have liquid; liquid is 

nothing but completely away from ideality. 

So, normally you find that J - T expansions are mostly the J - T expansion would be for a 

two phase system; when you are completely away from ideal gas. So, you have got a 

mixture of let say gas plus liquid or complete liquid also which is what is normally 



prepared in order to have more and more cooling effect, if the gas is or the mixture or the 

two phase mixture is subjected to J - T expansion. Why this happening? This is because 

the gases are imperfect at very low temperature, and therefore, they show the real gas 

behavior and they are completely away from the gas nature in these cases.  
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So, if you want to see what happens near room temperature, you can see now. If I expand 

the gas from 2 to 3 which is let say at room temperature now, it is not result in in 

cooling, but it is result in heating in this case. Why, because this initial state of the gas is 

above the inversion temperature, and therefore, instead of getting into cooling zone it is 

going into heating way. And therefore, one should ensure that this state 2 is lying below 

the inversion temperature before it takes off for isenthalpic expansion. So, in the fluid 

expands from state 2 to 3, the temperature rises. This occurs because the initial 

temperature at state 2 is above the inversion temperature. This is the very important 

parameter one has to understand. 
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Now, there are various gases and there got the one inversion temperature. What you can 

see from here is the gases like Helium, Hydrogen, Neon have got their inversion 

temperature has 45, 205 and 250 kelvin which are below the room temperature, while all 

other gases over here having their inversion temperature above the room temperature; the 

room temperature being 300 kelvin. It means that if I want to have isenthalpic expansion 

to be resulting into cooling for these gases, their initial state has to be brought down 

below their inversion temperature. Then and then only when they are subjected to 

isenthalpic expansion or a J - T expansion, they would result in cooling right. 

So, for gases like Helium, Hydrogen and Neon, in order to experience J - T cooling, they 

have to be precooled below T inversion temperature first and then subject to the J - T 

expansion. However, the other gases if they are subjected to isenthalpic expansion at 

room temperature only, they will result in cooling in this case, because their inversion 

temperature lie above the room temperature. This is very important for cryogenic 

temperature for these gases, we have to precool these gases first below their inversion 

temperature and then get cooling effect. Now, we talked about isenthalpic expansion. 
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Now, we will talk about isentropic expansion, whether entropy remains constant. 

Enthalpy and entropy are two thermodynamics state properties of matter which are 

functions of pressure and temperature. When the gases are expanded at constant enthalpy 

as in J - T expansion it is called as isenthalpic expansion. On the similar line, when the 

high pressure gases are expanded at constant entropy it is called an isentropic expansion 

or a reversible adiabatic expansion. This is all what we know from thermodynamics.  
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The commonly used expansion devices are turbo expanders which is a turbine for 

isentropic expansion or reciprocating expanders where cylinder and piston arrangement 

could be used to cause isentropic expansion. This is a work producing device; now, this 

is a difference between a J - T expansion and an isentropic expansion. Here in this case, 

when expansion occurs, there is some kind of work gets produced and we will get some 

work from this expansion. 

So, this is a turbo expander and you will get some kind of a W e or a shaft work done, 

when the gas expand from high pressure to low pressure. Or similarly, if we have got a 

reciprocating expanders, what you get ultimately is a work output W e when the 

expansion occurs. Now, similar as what you saw earlier, delta T by delta p at constant 

entropy is what we will consider now and this ratio is called as isentropic expansion 

coefficient.  
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Now, let see how we derive the value of delta T by delta p at constant entropy. The 

entropy is a function of both pressure p and temperature T, and therefore, what we can 

write is s is equal to function of pressure and temperature. Using the calculus as what we 

have done earlier, we derive following expression, where we say now, delta s by delta p 

at constant temperature into delta p at delta T at constant entropy into delta T by delta s 

at constant pressure is equal to minus 1. And therefore, if I rearrange this what ultimately 

I want to have is a mu s which is nothing but delta T by delta p here, delta T by delta p at 



constant entropy which is what this value is. If I rearrange this term what I get is equal to 

minus sign delta T by delta s at constant pressure into delta s by delta p at constant 

temperature. So, here I have got an expression now for mu s; in a similar way, what I 

have earlier got expression for mu h or mu J – T.  
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Now, for the same variables entropy s, temperature T and pressure p, we use again 

calculus and now I can write ds as, basically I am writing this expression by using partial 

derivative in terms of T and p - temperature and pressure. So, delta s by delta T keeping 

pressure constant into dT plus delta s by delta p keeping temperature constant into dp. If 

I multiply by T and this is again in the same line as what we have done earlier. We find 

that Tds is nothing but multiplied by T to this term, multiplied by T to this term. Again 

using the same approach, this particular thing is nothing but c p. While this delta s by 

delta p gives minus del v by del T at constant pressure which is what we obtained from 

Maxwell’s equation. 

If I use these two terms now in my original equation over here, I will put the values and 

what I put the values as delta T by delta s as c p, because if I compare this with this, I get 

this is equal to this and I get this is equal to this all right. So, I put the value of delta T by 

delta s as 1 by c p, and I get delta s by delta p as nothing but delta v by delta T at 

constant pressure. This is a negative sign over here and del 1 negative sign here, over 



here. If I put them together, I get mu s is equal to T by c p into del v by del T at constant 

pressure.  
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So, now I apply the ideal gas and I know for ideal gas pv is equal to RT, and therefore, v 

is equal to RT by p. If I differentiate that with respect to temperature keeping pressure p 

constant, I will get delta p by delta T is equal to R by p, because a T will go. And R by p 

is nothing but equal to v by T. See if I put these values in this equation, and if I replace 

del v by del T by is equal to v by T, I will get T and temperature constant, and my mu s 

ultimately gets reduce to the value of v by c p. So, mu s is equal to v by c p by using 

ideal gas law, what does it mean? It means that for an ideal gas mu s is non-zero 

quantity. 

In earlier case for ideal gas, mu J - T was 0. Unlike the case, in the J - T expansion when 

the enthalpy was constant we found that mu J - T was equal to 0. It means that the ideal 

gas does exhibit a cooling effect when it undergoes an isentropic expansion. This is the 

very important thing to understand that whatever happen when the gas is expanded 

isentropicaly, it would always result in cooling, and it is true for the gas also; which was 

not true in earlier case when the J - T expansion happened. Now, what we will see? We 

just found that for ideal gas mu s is positive non-zero, and what we will see now is what 

happens mu s when it is subjected to real gas. 
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So, here mu s is equal to this particular quantity. The derivative term represents the 

variation of volume with temperature; del v by del T is nothing but volume changes with 

temperature at constant pressure. This term is called as volumetric coefficient and is 

always positive, and hence isentropic expansion coefficient will always be positive in 

this case. Whatever happens mu s is going to be always positive, because volumetric 

coefficient will always positive in this case. It is clear that the isentropic expansion 

results in cooling irrespective of its initial state unlike J - T expansion, because this term 

is always going to be positive in this case all right.  
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Now, if I apply the same for real gas using van der Waals equation, we get the similar 

term as what it was in the earlier case. And if I substitute that in the same value as mu s 

is equal to this term which is what we got from earlier state.  
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What you can find, again with approximation, I get mu J - T is equal to v by c p which is 

means that for real gas also mu J - T is always going to be positive here. We found that 

whether is a gas or real gas mu J - T is always going to be positive; that means, when 

expanded isentropic, it will always result in lowering of temperature.  
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If I want to compare isenthalpic expansion with isentropic expansion; so, J - T expansion 

with isentropic expansion, I should get the J - T expansion as a condition of T inversion 

or inversion temperature. I do not have any such condition in this case. Similarly, when I 

have a J - T expansion, I get no work output and this is called therefore as internal work 

process. While here I get some work output and therefore it is called as external work 

process. The J - T expansion is a very simple device is a very simple in construction. 

While in this case, you will have a lot of rotary mechanism, reciprocating mechanism, lot 

of linkages, frictional losses, etcetera, and therefore the device is a complex device in 

this case. It is normally used for phase change of fluids that is what we talked about, 

because J - T expansion always bucks for real gas, and therefore, we always prepared to 

have phase change of fluid during the expansion. While here we should work with single 

phase fluid, because it have got two phase fluid, it will not be acceptable to the turbo 

expander or reciprocating expander. 

And lastly, because the J - T expansion is subjected through small wall constriction, the 

constriction can get subjected to clogging with the dust or the particles coming with the 

gas. And the clogging of the constriction is a disadvantage, and many times you have to 

clean it. While here one has to do regular maintenance and periodic checks are required, 

some time the lubrication has to be taken care of anything like that. So, this is what we 

will compare a J - T expansion on isentropic expansion. And one has to prepare 

depending on what you want, whether one should go for J - T expansion or one should 

go for isentropic expansion.  
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So, let us talk about the gas liquefaction systems here. I will understood in what with the 

expansions happen. We talk about now various gas liquefaction systems. And there are 

various gas liquefaction systems now . And first one is Thermodynamically Ideal system, 

Linde Hampson system, Precooled Linde Hampson system, Linde Dual Pressure system, 

Claude system, Kapitza system, Heylandt system and Collins system. Let us talk first 

about the thermodynamically ideal system, because we will have to compare all other 

systems with this ideal system as normally happens in engineering. So, this we this 

system serves as a comparison basis and let see how does this system work. 
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So, thermodynamically ideal system will have following salient features. Here this is a 

compressor, and this is a expander, and this is a container whether liquid after 

liquefaction is stored and the liquid is transferred from this. So, you can see that process 

1 to 2 is a compression process, process 2 to f is a expansion process, and some work 

output W e is obtained over here. While in compression process W c is supplied, this is 

the work of compression and this is heat which is generated Q r during compression. So, 

1 to 2 process is a compression process, while 2 to f is a expansion process all right.  

So, here what we can see is whatever gas is compressed is expanded, and it is converted 

to liquid and this gas is collected as a liquid form from this container. So, there is no 

return path for this gas. So, in a thermodynamically ideal system, all the gas that is 

compressed gets liquefied. So, all the processes are ideal processes in this and there are 

no irreversible pressure drops in a system. The process of compression and expansions 

are isothermal and isentropic respectively.  
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So, if I were to represent this system on a T - S diagram, this would look like this. These 

are two pressure lines and this is starting point at point 1 over here. So, 1 to 2 process is a 

isothermal compression process, temperature remains constant. And after pressurization 

at point 2, here the gas is expanded isentropically, therefore entropy remains constant. 

And this gas after expansion hits this end which is a such as a liquid curve at this point. 



So, whatever gas is compressed completely gets liquefied at this point; this is what the 

liquid varying, we get at this particular point all right. 

So, this point is shown as here and this is going to lie at a 1 bar pressure line, because 

this is my constant pressure, gas is expanded from point number 2 to f from very high 

pressure to 1 bar which is my starting point. So, this is ambient point 300 kelvin and 1 

bar, and this is 1 bar line, and this is what my final state would be. What does it mean? 

The initial state 1 and final state f can be determined as soon as I know the pressure at 

this point. So, pressure is known, temperature is known, I know the f condition. So, 

initial condition 1 of the gas, this condition determines the final position f of the gas after 

liquefaction.  
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This is an open thermodynamic cycle and that is why we get the mass transferred gets 

transferred from the working fluid only, because the working fluid flows across the 

system. My (( )) consider this as a control volume, I can apply the 1 st law of 

thermodynamics to this system and I can analyze this system. And the changes in 

velocities and datum levels are assumed to be negligible and they are neglected while 

doing this analysis.  
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The quantities entering and leaving the systems are given as below. So, if you see this 

table, I have got what is entering this control volume and I have to see what is leaving 

this control volume. So, what is coming in the control volume is the mass at point 1 

which is m 1 at point 1, and W c that is the work which is being supplied to the 

compressor W c. So, what is coming out of the system is the heat of compression or Q r, 

W e is the work of expansion. And what again coming out is m 1, because whatever 

compress is m 1; same thing is liquefied m 1 at point f. 

See if I apply the 1 st law, I will say energy coming in the control volume is equal to 

energy leaving the control volume. So therefore, m 1 h 1 is the energy associated with 

this gas which is entering at point 1, which is h 1 is nothing but the enthalpy of the gas at 

point 1, W c which is work done is equal to Q r which is leaving the system plus W e 

plus m f and h f associated enthalpy at point f all right. So, m 1 dot and m m f dot are 

nothing but the flow rates or the mass flow rate of the system. In fact as you can see in 

this case, m 1 dot is equal to m f dot.  
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If I further rearrange this system, the work W e produced by the expander actually is 

negligible, and therefore can be neglected as compare to the systems. And therefore, if I 

neglect W e, my equation gets reduced to Q r minus W c is equal to m 1 in bracket h f 

minus h 1, because m 1 dot is equal to m dot f. The compression process is assumed to 

be isothermal that means the temperature remains constant and this is what we talked 

about.  
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Hence, from second law of thermodynamics, we can write that Q r is equal to m 1 dot T 

1 into difference between two entropy between the process 1 to 2 which is the isothermal 

compression process. So, heat generated during compression is nothing but m dot into T 

1 into d s that is s 2 minus s 1. Also the expansion process is isentropic process, therefore 

s 2 is equal to s f, and therefore, I can replace this s 2 by s f. So, by substitution what you 

get is W c is a work of compression is equal to m 1 dot T 1 into s f minus s 1 minus m 1 

dot into h f minus h 1. So, entropy difference and enthalpy difference between the point 

1 and final point most important parameters to be use for calculation of W c.  
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This work of compression is done on the system and therefore, hence, the value is 

expressed as a negative quantity. So, work done on the system can be represent as 

negative quantity. So, minus W c is the work of compression which is equal to now m 1 

dot T 1 into s 1 minus s f minus m 1 dot into h 1 minus h f. So, work required per unit 

mass of gas compressed which is m 1 dot is equal to minus W c upon m 1 dot is equal to 

T 1 into s 1 minus s f minus h 1 minus h f. This is the most important thing that if I know 

the point 1, I get T 1 into s 1 minus s f and then I can know the enthalpy difference h 1 

minus h f also. And this determines the work required for compressing this gas and this 

is work required per unit mass of gas compressed this gas.  
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Since in an ideal system, the mass of gas compressed is same as mass of gas liquefied, 

and therefore we got m 1 is equal to m f or m 1 dot is equal to m f dot. So, work required 

per unit mass of gas that is liquefied, this is now W c by m dot f. So, I am just replacing 

m 1 dot by m f dot. So, W c by m f dot with a negative sign here is equal to T 1 into s 1 

minus s f minus h 1 minus h f. So, here again we can understand that - the work required 

per unit mass of gas liquefied depends on the initial condition of the gas, because the 

moment initial condition is T 1 and s 1 are obtained or h f obtained, and the pressure 

remains the same, and therefore s f at saturated liquid condition can be obtained at the 

same pressure, and h f is the enthalpy at the of the saturated liquid condition obtained at 

the same pressure. Therefore, moment your initial condition gets decided, this value gets 

decided immediately. Now, based on this we can have a simple tutorial to understand 

how do we calculate the work of compression to liquefier gas.  
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So, here there is a problem. Determine the ideal work requirement for liquefaction of 

nitrogen beginning at 1 bar pressure and 300 kelvin. So, what I know is my initial 

condition is at 1 bar and 300 kelvin. So, my first step is basically get a T - s diagram for 

ideal thermodynamic cycle, I shown. This is my T-s diagram and this is what is available 

in various books; this is available in net also. For nitrogen, we should get this diagram. 

And find out a condition, as soon as I know the point 1, I will locate the point f. Because 

I will come down at constant pressure, go the constant pressure line and locate the point 

f. I draw a horizontal line from 1 to 2, I draw a vertical line from over here, and the 

intersection would otherwise give me the point 2 at this. So, this is 1, 2 and f is obtained 

or basically I should know what is my 1 point and what is my f point. This is the most 

basic requirement to calculate the work ideal work requirement for liquefaction of any 

gas. 
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Step 2 now; the state properties at different points are as given below. So, what are the 

state properties at 1 and f? At 1 I have got the pressure of 1 bar, at f also I have got the 

pressure of 1 bar. Here I got a temperature of 300 and 77 kelvin 300 and 77 kelvin at 1 

bar; 77 is the boiling point of nitrogen. Corresponding enthalpy values have to be taken 

from this chart now. So, a T-s chart has to be made available, you can see from different 

books. And the read enthalpy at point f and read enthalpy at point 1; these are the two 

values. Similarly, read entropy at point 1 and read entropy at point f.  
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And here put those values in the equation; substitute in the equation these values. So, this 

is my equation now. W i we can call ideal work done per mass of the gas which is 

liquefied. So, W i by m f dot with a minus sign into T 1 into s 1 minus s f minus h 1 

minus h f, if I put these values what I get is a 767 joule per gram. So, my compressor 

requirement, per gram of mass which is liquefied, I will get I will have to put in 767 

joules. So, my work requirement, therefore ideal work requirement for nitrogen gas to be 

liquefied is 767 joules per gram.  
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If I go to the second tutorial now; calculate the ideal work requirement for liquefaction of 

helium and hydrogen beginning at 1 bar pressure and 300 K, and compare the results. I 

will follow the same technique as what I did earlier for nitrogen gas. My initial state at 1 

bar and 300 K will give me the final position also. So, the T - s diagram for a 

thermodynamic cycle is as shown exactly same thing. Now, again I will go for helium 

and hydrogen T-s chart. Look at the point 1 at 1 bar and 300 kelvin, this is the 1 bar line. 

And for hydrogen, this will heat at 20 kelvin, for helium it will be at 4.2 kelvin. So, the 

temperature will remain actually 4.2 kelvin. One need not be bothered to locate this point 

2, because this point 2 will be at a very high, high pressure - very high pressure. So, what 

I need to locate is point 1 only and point f only.  
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So, step 2 is the state property of hydrogen and helium at different points are as given 

below. So, here are my properties. This is point 1 and f for hydrogen, and this is point 1 

and f for helium, all are at one bar pressure which is the room temperature is 300 kelvin 

in both the cases; while the point f is at the boiling point of respect to gases. So, point f is 

going to be at 20 kelvin for hydrogen and at 4.2 kelvin for helium. Read the 

corresponding enthalpy values and read the corresponding entropy values as what we 

have done earlier. 
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See, if I put this values in this equation, this values, what I get for hydrogen is 300 into s 

1 minus s f which is this minus h 1 minus h f which is this, look at this minus point, 

because this is with respect to a particular initial condition or 0 point condition, and 

therefore, this is minus 75 is written over there, this will become positive in this case. 

What I get is 9835 joules per gram for hydrogen and if I do it for helium put the same 

values here, I get only 6864 joule per gram. What does it indicate? It indicates that the 

work done for liquefaction of hydrogen is more than work done requirements for 

liquefier helium gas. 

So, it is not although the boiling point of helium is just 4.2 kelvin which is less than that 

of hydrogen. Still the work done to liquefier 1 gram of helium gas is less than that for 

hydrogen. So, basically it depends on what is my h 1 minus h f values or what is my 

latent heat in this case. This value is much higher for hydrogen as compared to helium. 

Similarly, this value also is much higher as compared to what it is for helium. So, it 

basically depends on the nature of the gas, what is the amount of work required to 

liquefier hydrogen and work required to liquefier helium.  
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So, this table give you ideal work requirement for various gases. And you can see the 

boiling point of helium is 4.21, 20.27; still the ideal work requirement for hydrogen in 

this case is more than that for helium. Similarly, nitrogen is only 768, but for air it is 738 

argon, oxygen and ammonia. These are different values given. We will expect that you 



can work out your own ways of calculating is ideal work requirement, and you can 

compare this values with this table or you can refer to any literature, and you can 

compare your findings with this ideal work requirement in terms of kilo joule per kg or 

joule per gram.  
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With these tutorials you should be in position to calculate using charts, the ideal work of 

liquefaction for air, oxygen, helium, we have already done ammonia. Take the T - s 

diagram - T-s chart for these gases, find out the enthalpy values, find out the entropy 

values and calculate the ideal work requirement to liquefy this gas. Compare these values 

with the values given in the table. So, we have already given the table and whatever 

values you calculate, please compare, the values will be little different depending on how 

good or bad, your charts you read, sometimes you can read some wrong values and 

according to which your values can show some difference. 
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In order to summarize, whatever we have covered today, we found that for ideal gas mu 

J - T is equal to 0. But for a real gas J - T coefficient depends upon the relative 

magnitude of departure from joules law and Boyle’s law. We saw the two parameters 

and we we found out that these two parameters in the bracket decide whether the mu J - 

T is going to be negative, positive or 0. The gases like nitrogen, air, show J - T cooling 

when expanded at room temperature. Because the inversion temperature for these gases 

is more than room temperature; so, one need not worry about temperature in this case, 

because the inversion temperature for these gases is way above the ambient temperature 

of 300 kelvin, and therefore, if they are subjected to J - T expansion, they would 

immediately result in cooling. However, the other gases like helium, hydrogen and neon 

they required to be precooled to bring down their initial temperature below the inversion 

temperature, and then only the y will experience J - T effect or J - T cooling.  



(Refer Slide Time: 45:44) 

 

In expansion devices like turbo expanders and expansion engines, the expansion process 

is isentropic or reversible adiabatic. The coefficient of isentropic expansion is given by 

mu s value which is T by c p into del v by del T at constant pressure. And we found that 

the isentropic expansion is always positive for both real and ideal gases. Therefore, one 

need not worry about inversion temperature for search cases. It results in cooling for any 

initial state, unlike the J - T expansion which is dependent on what is the T inversion 

temperature for that particular gas. 

(Refer Slide Time: 46:24) 

 



The J - T expansion is normally used where phase changes are required, where whereas 

isentropic expansion is used for single phase fluids; this is what is met clear right. 

Because J - T expansion normally we want to have real behavior, we want to have non-

ideal behavior, and therefore, we prepared to have a phase changes or we would prepare 

to have liquid in this case at initial condition also. While isentropic condition expansion 

is normally used for single phase fluid, because having liquid there can spoil can have 

problems for the turbo expanders or reciprocating expansions. 

In a thermodynamic ideal system, this is what we saw all the gas that is compressed gets 

liquefied. And the work required per unit mass of gas compressed and gas liquefied are 

given by W c by m f dot minus sign is equal to T 1 into entropy difference between the 

initial state and the final state minus the enthalpy difference between the initial state and 

the final state. Thank you very much. 

 


