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In the previous lectures, having derived the equations of bulk mass conservation, the 

momentum equations, the mass transport equation and the energy transport equation, we 

are now ready to take up their application to a special class of flows which are called 

boundary layer flows. 

I will be beginning with boundary layer flows, which are in laminar state. Today’s 

lecture is to derive appropriate equations for laminar velocity bounded errors and scalar 

bounded errors. 
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The purpose is to derive 2 dimensional flow and scalar transport equations to invoke the 

boundary layer approximations, to write out 2 dimensional velocity boundary layer 



equations and to write out 2 dimensional temperature and concentration boundary layer 

equations. 
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Then very briefly mention the methods of solution, which we shall be developing in the 

course of lectures. Recall that our 3D Navier Stokes equations were written in this 

manner d rho m by dt d rho m U j by dx j equal to 0. 

Then there were 3 momentum equations; one each in direction x 1 x 2 and x 3 and it 

comprised of unsteady term, the convection term, the pressure gradient term, the 

diffusion term and the body force term. 

This is the second part of the stress term that gives rise to d by dx j mu d U j by dx i. 

Further, we are going to make certain assumptions because as I said we are we want to 

avoid use of numerical methods and try to achieve as much as possible by analytical 

means. 

This requires that we make certain assumptions- the first assumption is the flow is steady 

d by dt equal to 0. I am not at all suggesting that analytical solutions to unsteady flow are 

not possible but then our main interest in this course is to deal with steady flows in 

equipments. 



Therefore, I will take assume that d by dt equal to 0. I would say that the flow is laminar 

and perhaps the most important assumption here is that all properties the intrinsic 

properties, density and specific heat and the transport properties mu k and d are uniform. 

You will recall mu arose out of Stokes’s stress and strain loss, k arose out of the 

Fourier’s law of heat conduction and d arose out of the Fick’s law of mach diffusion. We 

are going to say that they are all uniform. 

That means they do not vary with position in the flow and therefore for all practical 

purposes they are constants in space. I will also now, since we are dealing with 2 

dimensions, I will instead of writing x 1 x 2, I shall write x and y by saying x is equal to 

x 1 and y is equal to x 2. 
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And the dependent variables, I would change to u equal to u 1 and v equal to u 2 and 

body forces which are essentially problem specific are presently to be ignored. So with 

this assumption you will notice our mass conservation equation would simply because 

density is constant would reduce to du by dx plus dv by dy. 
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I can go back a little to see, if density is constant then that term is 0 and this term rho m 

du j by dx j equal to 0 would simply be du 1 by dx 1 plus du 2 by dx 2 equal to 0. 

Therefore, that will simply read as du by dx plus dv by dy equal to 0. 
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The x momentum equation or the momentum equation in x direction would read as rho 

times u du by dx plus v du by dy equal to minus dp dx plus mu d 2 u dx square and d 2 u 

dy square. 
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This requires little explanation. For example, if mu is constant then, d by dx j mu du j dx 

i would simply be written as mu times or if I may use the paper you will see that, d by dx 

j of mu times du j dx i would be mu times d 2 U j by dx j dx i, that will be equal to mu 

times d by dx i of du j by dx j and that is 0 by continuity equations for constant density 

du j by dx j is equal to 0. 
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Therefore, this term simply vanishes. Now, let us look at this term - says that d by dx j of 

mu du i dx j for constant viscosity. This will be d by dx j u i and in 2 dimension; this will 

simply be du 1 by dx 1 d 2 u 1 by dx 1 square plus d 2 u by u 1 by dx 2 square and with 

our replacements mu this will be d 2 U by dx square plus d 2 u by dy square. So that 

explains, how that term would modify, we will look at this term now. 
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For constant density and steady flow, you have d rho m u i by dt plus d by dx j of rho m 

u j u i and for constant density, this will simply become rho m du i by dt plus rho m u  j 

du  i by dx j plus rho m u  i du  j by dx j. 

Now, in a steady flow that is 0 and due to mass conservation equation du j dx j is 0. 

Therefore, this will become d rho m u j du j by dx j or in 2 dimension; this will become 

simply u 1 du 1 by dx 1 plus u 2 du 1 by dx 2 in x direction.  
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It will return rho m u 1 du 2 by dx 1 plus u 2 du 2 by dx 2 in x 2 direction. You will see 

now, that how these terms have been modified to read like that. So, you will see in x 1 

direction for example there is rho m u  1 du  1 by dx 1 which is rho u  du  by dx plus u 2, 

which is v du  by dy equal to minus dp by dx and the 2 diffusion terms that I mentioned. 
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Similarly, in the y direction you would have that term. So, these are the equations of flow 

of a uniform property laminar 2 dimensional flow. We shall now invoke the boundary 

layer concept and this is perhaps the most important slide for you to remember. 



Now, the concept of boundary layer near a wall was first introduced by Ludwig Prandtl 

in 1904, to theoretically predict the drag experienced by a body when it was immersed in 

a flowing fluid.  

Ships experience drag, motor cars driving in a motorway experience drag, aircrafts 

experience drag and these drags are substantial. You have to expand energy to overcome 

them and therefore it is very important that how much is the drag offered by a body when 

it when the fluid flows past it. 

Prandtl suggested that you do not need to consider the total flow around a body, but 

nearly concentrate on a thin region very close to the wall as shown here, which he called 

the boundary layer region. In this region that significant velocity variations take place. 
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And it is the region, in which viscosity of the fluid is dominates the determinant of flow. 

In other words, viscosity viscous terms dominate very close to the wall. As you move 

away from the wall, the importance of these terms becomes even more negligible and it 

is these terms which mainly dominate in the far away from a solid surface. 
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Prandtl called the thin and long region near a wall as the boundary layer region, by long 

and thin may mean that the dimension lateral to the flow delta at any point x in the flow 

delta is much smaller than x. 

That is what we mean by long and thin flows passed the surface or an interface the 

region outside where a lateral velocity gradient are almost negligible is called the free 

stream region. In the free stream, there is velocity u infinity t infinity and a conserved 

property phi infinity. 

Now, to develop this mathematical interpretation of this concept of long and thin flow 

close to a wall, we are going to introduce dimensionless variables. So, x star would be 

written as x divided by L, y star would be written as y divided by l, u star would be 

written as u divided by U infinity, v star would be written as v divided by u infinity, p 

star as p divided by rho infinity square, Re as U infinity, L by nu this is the reynolds 

number corresponding to reference length L and assumption is delta is much less than X 

and u the velocity in x direction is much greater than v. 

It is this condition, which ensures that, in a boundary layer conditions of the properties of 

the flow at one cross section are influenced only by the upstream conditions. The 

conditions downstream have no influence on the conditions at a given cross section.  
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L and U infinity are simply the reference length and reference velocity. Each of these 

quantity start quantities is a dimensionless quantity and therefore the equations would 

read like this. So, let us look at the first equation after non dimensionalization. 
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You will see that du by dx plus dv by dy equal to 0. If I make this u to u star, it will 

become u’s infinity du star by dx star, which means divided by L and likewise u infinity 

dv star by dy star divided by L equal to 0. 



(Refer Slide Time: 14:43) 

 

So, it is u infinity by L du star by dx star plus dv star by d y star equal to 0 and that is 

what I have written in equation number 6 here du star by dx star plus dv star by dy star 

equal to 0. Likewise, let us look at the momentum equation. 
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The Momentum equation was written as rho times u du by dx plus v du by dy equal to 

minus dp by dx plus mu times d2u by dx square plus d2u by dy square. If, I non 

dimensionalize this equation I will have rho u infinity square giving me u star du star by 



dx star, which is L plus v star du star by dy star minus rho u infinity square dp star 

divided by L dx star. 

All this is equal to plus mu times u infinity divided by L square d2u star by dx star 

square plus d2u star by dy star square. If, I divide through by this quantity, you will see I 

will get u star du star by dx star plus v star du star by dy star equal to minus dp star by dx 

star plus mu U infinity by L square into L by rho u infinity square into d2u star by dx star 

square plus d2u star by dy star square. So, what is this group? This is simply mu divided 

by rho u infinity L and that is nothing but 1 over Reynolds number. 
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So, this equation is equation 7, u star du star by dx star plus v star du star by dy star 

minus dp star by dx star plus 1 over Reynolds plus d2u star by dx star square plus d2u 

star dy square. If, I have to non dimensionalize the v momentum equation, it would 

appear very similar to that equation with dp star by dy star, here the dependent variable 

would be v star and again divided by Reynolds number. 
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Now, I am going to do an order of magnitude analysis of this equation. So, we said u is 

considered of the order of 1 and x is considered of the order 1. Then, according to this 

assumption y dimension would be of the order of delta. 
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The v velocity will also be of the order of delta and that is what I have done. So, 1 

divided by 1 plus delta star by delta star order of delta star and what this shows is that 

both the terms are of the order unity. Therefore, neither could be ignored in this equation. 
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So, du star by dx star and dv star by dy star is equal to 0. Remember, here both 

numerator and denominators are of the order 1. Here, both are of the order delta but it is 

the derivative, which is most important and both derivatives are of the same order. 

Likewise, let us do this for momentum equation. Then, u star is of order 1, u star dx star 

is 1 by 1. This is of the order delta star u star is of the order 1 divided by y star, which is 

delta star and therefore each term on the left hand side is of order. 

I will now turn my attention straightaway to the diffusion terms. Then, you will see this 

term is order of 1 by 1 square. Whereas, this term is 1 divided by delta square and it is 

quite obvious that this term would usually dominate over this term because delta is so 

much smaller than 1. In this equation, u star du star by dx star plus v star du star by dy 

star equal to minus dp star by dx star plus 1 over Reynolds number into d2u star by dx 

star plus square plus d2u star by dy star square. 

This term is much bigger than this term and therefore I will drop that term. Now, this 

term as a whole is of the order of 1. This is although of the order 1 and this term is of the 

order delta square delta square 

But Prandtl did say that, you must have effect of viscosity included if you wanted to 

predict the drag, which means one of these two terms must be included. We have already 

decided to drop this term. So, if this term is included, if an all terms are of order 1 then 



Reynolds number or 1 over Reynolds number must be of order 1 or I mean order delta 

square. 

So that, Reynolds number is proportional to one over delta square, this is a large 

quantity. So that, the delta square would get canceled with this delta square and the total 

term would then be of order 1 and likewise I can say therefore by deduction this term 

would also be of order 1. 
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So, the only term that is dropped now, that can be dropped is dt u star by dx star square, 

all other terms are of order 1. Let us examine likewise the v momentum equation, then 

you will see that the v momentum equation is u star dv star by dx star plus v star dv star 

by dx star dy star equal to minus dp star by dy star plus 1 over Reynolds number into d2v 

star by dx star plus d2v star by dy star square. 

This is 1 delta star by 1 plus delta star delta star by delta star. So, you will notice that the 

left hand side is of order delta square. We have agreed that 1 over Reynolds number shall 

be of order delta square multiplied by 1 plus delta star by delta star square. 

And again you will see that, if I take delta star common then I have delta star cube is a 1 

plus 1 over delta star square. So, you will see that the first term is again much smaller 

than the second term because the first term is of order 1 the second term is of order delta 

square and therefore that can be neglected but the total term again is of order delta star. 
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So, each term in this equation is of the order delta star and therefore dp star by dy star 

will be of order delta star square. So, we conclude that in the x momentum equation each 

term is of order one. 

Whereas, in the v momentum equation or the y momentum equation each term is of 

order delta star. Therefore, this equation as the whole can be ignored in preference to that 



equation, which is much bigger so and the principle deduction from this is that dp star by 

dy star is of the order delta star or can be taken as 0. 

What this says is that, in a boundary layer in a long and thin flow the pressure variations 

is negligible in y direction. In fact, I can say that from this it follows that minus dp star 

by dx star now would essentially be minus dp star by dx star, which I can also write as 

minus dp star infinity by dx star. Which is also equal to minus dp whole star by dx. I can 

measure the pressure at the wall in a given flow and I would get the quantity dp star by 

dx star. 
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And the partial derivative is now replaced by total derivative simply because the 

variation in y direction is 0. The conclusion from this slide is each term in this equation 

is of order 1 therefore retained. 

Each term in this equation is of order 1, the only term which is not is, this term the actual 

second derivative in actual direction and ignore each term in this equation is of order 

delta square and of the order delta star. Therefore, the equation as a whole is neglected. 
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You will then see the boundary layer approximations that emerged. So, what does it say? 

It says that u star will be much greater than v star, which we had already postulated the 

gradient of velocity in a y direction. 

The u velocity in y direction would be much greater than the gradient of velocity because 

would be one over delta star, whereas this is one over one this is delta star by one and 

this is delta star by delta star. 

Therefore, this would dominate over all these. We already shown that the second 

derivative in y direction will be much greater than the second derivative in x direction 

both for u and v. We also shown that the pressure gradient in y direction would be almost 

negligible. 
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Therefore, the pressure gradient in x direction which is of the order 1 can be replaced by 

either the pressure gradient in the infinity state that is the free stream region or it can be 

evaluated at the wall state dp star wall dx star. The reduced equations also called the 

Boundary layer equations are simply du by dx plus dv by dy equal to 0. 
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Rho into u du by dx plus v du by dy equal to minus dp infinity by dx plus mu d2u by dy 

square. Now, just see for a moment, if you look at this figure you will see outside in the 

free stream region the velocity variation with respect to y is negligible or 0. 
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Because u remains equal to u infinity outside the boundary layer. So, if I want to write 

this equation in the infinity state that is in the free stream region, I will have this will 

become rho infinity u infinity du infinity by dx but this term would be 0 because du dy is 

0 and also d2u dy square is also 0, because this term vanishes in the free stream. The free 

stream region is sometimes called in viscid region because viscosity is not allowed to 

play any part. 

The momentum equation written for the free stream region would simply be minus dp by 

infinity by dx equal to rho u infinity du infinity by dx and in fact, I can replace that term 

by this term. 

These equations must be solved with n boundary conditions because there is a second 

order derivative in y direction. Therefore, you need boundary condition at y equal to 0 

which is y equal to wall and y tending to infinity which is the free stream condition. 

If u infinity x is specified, one could readily replace that by this condition. When the 

equations are solved with appropriate boundary condition, you would have u as a 

function of x and y and v as a function of x and y as a solution because this term is 

specified have two equations and two unknowns u and v. These can be readily obtained 

and what you are interested is the shear stress at the wall, which is simply mu times du 

dy at y equal to 0 which is the local shear stress tx. 



(Refer Slide Time: 30:12) 

 

The average shear stress which is given as 1 over L 0 to L mu du dy by dx divided by 1 

over L will give you the total drag over a surface L of length L. So, we have finished our 

discussion on velocity boundary layer equation. 

Now, we will turn our attention to energy equation and you will recall the energy 

equation that we wrote on the last slide of the previous lecture. So, this is the rate of 

generation of rate of change of enthalpy plus conduction heat transfer first diffusion heat 

transfer the heat transfer due to mass diffusion. 

This is the viscous dissipation, this is the pressure work terms and these are the chemical 

energy and this is the radiation, h m as you know is omega k h k, where h k is the 

specific enthalpy of spaces k and h k is also given as heat of formation at sometimes at T 

ref plus sensible heat Cp k dT. 
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We again invoke uniform property assumption in 2 dimensions. The equation would read 

something like that; let me go back a little so the first equation would read in 2 

dimensions. 
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It would read rho m dhm by dt plus rho m into u dhm by dx plus v dhm by dy equal to 

and with uniform property d2t dx square plus d2t dy square plus d by dx of sum 1k h k 

minus d by dy of sigma m naught 2k h k plus mu times 2 into du by dx square 
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plus 2 times dv by dy square plus dp by dt plus u dp by dx plus v dp by dy plus Q dot 

chem plus Q dot rad. So, you will see in 2 dimensions the equation takes this form and 

now, if I first of all make all our assumptions that the flow is steady therefore that is 0. 



h m which is h naught f h k which is h naught f k and Cp k equal to Cp m then Cp m T 

minus T ref because all spaces have the same property of the mixture and therefore Cp k 

is equal to Cp m. 

It is a uniform mixture you have k times d2T dT square and if I ignore for the time being 

the diffusion equation the diffusion heat transfer for a single phase flow non reacting 

flow then or absorb that in this. 

Then you will see I get terms like this. Now, I am going to non dimensionalize these 

terms. This as the whole can sigma omega k h k, which is h m would become sigma 

omega k h naught fk plus Cp m T minus T ref into sigma omega k and which you know 

is equal to 1. 

So, you get that term sigma omega k h naught fk and that is equal to heat of combustion 

plus Cp m T minus T ref and these term essentially is accounted by the chemical reaction 

and I can replace h m here for is non reacting flow Cp m T minus T ref. 
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What I am done now is, I have said define T star equal to T minus T infinity divided by 

some reference temperature difference. Then, you will see that this term would simply 

become rho m Cp m into U dT by dx plus v dt by dy.  

If  I have to non dimensionalize the first term here, it would read as rho m Cp m delta T 

naught divided by L u infinity equal to u star dT star by dx star plus v star dT star by dy 

star square and that would equal k times delta T naught divided by L square d 2 T star by 

dx star square plus d 2 T star by dy star square plus mu times u infinity square divided by 

L square 2 times du star by dx star whole square plus 2 times dv star by dy star whole 

square 
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plus du star by dx star whole square plus dv star by dy star whole square and so on. So, 

that is what you see here the terms are written like that. Now, if I divide through by this 

quantity you will readily see that, I will get u star dT star by dx star plus v star dt star by 

dy star equal to k delta t naught by L square into rho into L divided by rho m Cp m delta 

T naught u infinity. So, you will see delta T naught gets cancelled with delta T naught L 

gets cancelled with one of these L’s and k divided by rho m Cp m k m. You will be 

simply the thermal diffusivity alpha m divided by L into u infinity, which I can also write 



as alpha m divided by nu m nu m divided by LU infinity and that is nothing but 1 over 

Prandtl number into 1 over Schmidt number and that is what you see I mean one over 

Reynolds number beg your pardon 
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That is what you see here, the multiplier of d 2 T star by dx star square plus d 2 T star by 

dy star square would simply become 1 over Reynolds Prandtl. The third term, the 

pressure work term , he viscous dissipation term is somewhat important. 
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In the sense that you will see now that if I have to divide through again. Then, you will 

see that mu u infinity square divide by L square divided by 1 over rho m Cp m delta T 

naught u infinity into L. 

Now, you will see this becomes equal to u infinity square divided by Cp m delta T 

naught. I have taken care of that term and this term then I have mu times rho m U 

infinity L and therefore this is nothing but 1 over Reynolds number. 

This term is dimensionless as we can see u infinity square is meter square per Second 

Square. What about this term Cp m delta T naught, Cp m is joules per kg kelvin 

multiplied by Kelvin. So, essentially it is joules per kg. 

Joule is Newton meter by kg. Newton is kg into meters per Second Square into meter 

divided by kg. So, kg kg gets cancelled and you again get meter square per Second 

Square. Remember, Cp m delta T naught and u infinity square both have same units and 

therefore this is a dimensionless quantity.  

Professor Eckert defined a quantity u infinity square by 2, which is the kinetic energy 

divided by Cp m delta T naught, which is the sensible energy as Eckert number E c. E c 

is called the Eckert number E c and therefore you will see that it is at the moment U 

infinity square by 2.  
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So, you get here Eckert number divided by Reynolds into all that. What about the 

pressure gradient terms? Here you will see only a multiplier E c. In other words, the 

dimensionless equation tells us that, there are now three parameters associated with heat 

transfer. 

One is the Prandtl number, the other one is the Reynolds number and the third one is 

Eckert number. We can readily see, if the Eckert number was large both these terms will 

be important. If the Reynolds number is high and Eckert number is small then we can 

ignore these two term. 

The pressure work term and the viscous dissipation term. So, with this equation I can do 

order of magnitude analysis because it is now in dimensionless form. So, what is the 

order of magnitude analysis that I do? 
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So, the left hand side which is equal to u star dt star by dx star plus v star dt star by dy 

star will simply become 1 1 1 plus delta star 1 by delta star. So, both the terms on the left 

hand side are important.  

Right hand side remember this is 1 over Reynolds number Prandtl number into 1 divided 

by 1 square plus 1 divided by delta star square and therefore that term would be d 2 T 

star by dx star square will be much smaller than d 2 T star by dy star square. 
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So, if you follow through in this manner you can carry out that order of magnitude 

analysis and the resulting equation would be simply this rho Cp u  dT by dx plus v dT by 

dy equal to diffusion only in y direction plus viscous dissipation due to velocity gradient 

in y direction plus u d infinity by dx plus Q dot chem plus Q dot rad. 
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This is the boundary layer form of the energy equation. A note on Prandtl number. 

Prandtl number as you know is the ratio of Cp mu k, which is also if I divide both the 

numerator and denominator by rho than it is mu by rho divided by k by rho Cp and that 

is equal to nu divided by alpha or kinematic viscosity divided by thermal diffusivity.  

It is in a way the ratio of the rate at which momentum is transferred divided by the rate at 

which heat is transferred. In boundary layers, this diffusion is taking place only across 

the boundary layer. 

Then, you also notice that Prandtl number is the property of the fluid. It has nothing to do 

with the flow and therefore we can classify fluids according to their Prandtl numbers. 

Close to one and little below say from about 0.5 to 1, you usually get gases, but 3 to 10 

or little over 10 is water but if you extend that to about 100 you will get many organic 

liquids included in this range. If the Prandtl number is much greater than 100, then 

usually you will encounter very viscous oils because Prandtl number has viscosity in the 

numerator. Usually, oils have a very large Prandtl numbers. On the other hand, liquid 

metals like mercury, sodium, liquid potassium, which are used for high heat flux heat 

transfers as obtained in for example breeder reactors liquid metals are preferred.  

In those cases, their conductivities are so high compared to their viscosity that liquid 

metals have very low Prandtl number. There are not many fluids in this range. 



But from about let us say 5 or into 10 is to minus 3 to below, you essentially get liquid 

metals. So, you have liquid metal range is very low Prandtl number gases very close to 

unity Prandtl number. 
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Water and organic liquids between 3 and about 100 and oils much greater than 100. The 

mass transfer equation can likewise be derived I am wont going to the details and it reads 

in like this. 
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It can be non dimensionalised and instead of Prandtl number you will have a Schmidt 

number. We will take up all this, when we come to mass transfer. Therefore, I can 

summarize now what we did in this lecture. 

We started with the derived 3 dimensional forms of the equations of bulk mass transfer 

momentum and energy and reduce them to the boundary layer form which contains two 

convection terms. 

One diffusion term in y direction and one source term. It is good to get used to this form 

of generalization of the equations, you will see for phi equal to 1 you will simply have d 

rho U by dx plus d rho v by dy. 

And that term would be 0 and S phi is 0 it is essentially the mass conservation equation 

for u phi equal to u, you will see that this term is simply the viscosity and this term is 

minus dp infinity by dx. 

For temperature, this term can be taken for phi equal to temperature this term can be 

taken as k m divided by Cp m and all the right hand side will be divided by through by 

Cp m and for spaces k this. 

Now, you will recall from your undergraduate studies that any 2 dimension on 

differential equation written in the form a into phi xx plus 2 b into phi xy plus c into phi 



yy equal to sum source term right hand side which may contain gradients of phi in so on 

and so forth. 

Then, the discriminant b squared minus ac; if it is 0, then the equation is called parabolic. 

If b squared minus ac is less than 0 the equation is elliptic and b squared minus ac is 

greater than 0, then the equation is hyperbolic. 

Of course, we are going to assume that gamma is constant because we are dealing with 

uniform property. So, we have only d 2 phi by dy square term that means c is finite, but 

in our equation a and b are 0 and discriminant b square minus ac is actually 0. 
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Therefore, our boundary layer equations are parabolic and for such parabolic equation 

there are 3 methods of solution - the first one is called the Similarity method in which the 

partial differential equations are converted to ODE’s Ordinary differential equation 

integral method. Similarly, the numerical method finite difference of finite element. We 

will take up these methods in the next lecture.  


