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In all previous lectures, our interest was to consider heat and mass transfer close to a 

wall, whether it is force convection or natural convection. In this last lecture of this 

course, I am now going to consider a flow with heat mass transfer and chemical reaction 

in which, no wall is present. In everyday language, it is nothing but the combustion 

flame. My task is to see how we can apply the knowledge that we have gained so far, to 

predict the length and thickness of a diffusion flame. 

(Refer Slide Time: 01:27) 

 

I will proceed as shown here. First of all, I will define a flame and then, I will set up the 

governing equations. First, consider laminar jet, whose velocity would be predicted. The 

flame length and shape of the laminar jet flame would be predicted. Likewise, we will do 
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the same for the turbulent jet flame. Remember, the word jet implies that there is no wall 

present. It is sometimes called as the free shear flow. 

(Refer Slide Time: 02:04) 

 

Let us look at the definition of a flame. Here is the definition and the most commonly 

encountered diffusion flame is the candle flame that you can see here. In diffusion flame, 

the source of the fuel and the oxidizer are physically separated. So, the candle flame is an 

example, in which there is a combustion of gaseous hydrocarbon fuels. Sorry, the candle 

flame is an example, in which the melted wax evaporates and so the fuel alone arrives 

into the flame. Whereas, the oxygen required is gathered from the surrounding. So, fuel 

itself does not have any oxygen in it, but the oxygen required for burning is obtained 

from the surroundings by the process of diffusion. 

Gaseous hydrocarbon fuels are often burnt in the same manner. So, here is a typical 

burner in the fuel. It is carried through an inner pipe and air is carried through an annular 

pipe. Sometimes, this air may also be swirled to enhance the rate of mixing. Here, the air 

entrains inside the burning zone and a flame is formed. So, this is a typical laminar 

diffusion flame, where the velocities are low. If the velocities were high, you will get 

what is called as turbulent diffusion flame. It is with very jagged edges, unlike the 

laminar flame, which has a nice smooth edge. 
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So, gaseous hydrocarbon fuels fuel flows through the inner pipe of the burner, whereas 

the air flows through a concentric pipe. This is the situation at hand and essentially, you 

have a free shear flow; there is no wall present across the thickness of the flow. 

(Refer Slide Time: 03:59) 

 

What is the main objective? Here, I am defining the fuel, which is coming in through a 

diameter pipe of diameter D. The jet spreads along the dotted line, whereas the flame 

radius varies with x. It is highest at the beginning and goes on decreasing, when the 

radius goes to 0. You essentially say that is the flame length L f. We are assuming 

stagnant surroundings completely and this is essentially the burning zone of the jet. 

The temperature profiles across any cross section would look like this. So, here is the 

radius (Refer Slide Time: 04:42) and you can see that the value of the velocity is 0 at the 

edge somewhere. Of course, the exact location where it will be 0 is not known and that is 

what we wish to find out. At the edge of the flame, velocity would be 0. In the center, it 

would be high. So that is the velocity profile and the oxygen profile would go like that. 

The temperature profile would go something like that and the fuel profile would be as 

shown here. It will be highest and the edge of the flame is shown somewhere here. So, 

the fuel would be high at the axis. The oxygen would be high at the edge of the layer. 

The temperature would be low in the environment, but would increase to a peak value 

somewhere and decrease a little in the core region. 
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The main reaction actually takes place at the edge and therefore, you get the temperature 

there. So, the main objective is to predict the flame length L f and flame shape, which 

means function r f flame as a function of x. In order to make life simple, we again use the 

simple chemical reaction as the combustion model. In stagnant surroundings, assuming 

simple chemical reaction, I can write 1 kilograms of fuel plus R st kilograms of air 

oxidant air. R st would be the air fuel ratio. It gives me 1 plus R st kg of product. The 

postulated chemical mechanism is simple chemical mechanism. Our interest is to predict 

L f and r f as a function of x. This is an axis symmetric case; it is a round jet and 

therefore, this is an axis symmetric case. 

(Refer Slide Time: 06:37) 

 

The continued equation without constant properties would look like d by dx equal to rho 

m u r plus d by dr rho m v r equal to 0. In a free jet, the pressure gradient term is 0. So, in 

the momentum equations, you do not see any pressure gradient term. You have simply 

convection terms and a diffusion term according to the boundary layer approximation. 

This is the equation for the fuel; this is the equation for the oxidant and this is the 

equation for the energy or the enthalpy h m. Source term is r times R fu multiplied by 

heat of combustion. So, h m would now simply represent the sensible enthalpy h m equal 

to c pm t minus t f and that is what h m would represent. 
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(Refer Slide Time: 07:39) 

 

These are the equations to be solved for this problem. First of all, let us solve the velocity 

problem and we are going to make a very drastic assumption. We are going to say that 

the properties of the fuel, properties of the mixture inside the flame zone are constants. 

So, properties are uniform. 

(Refer Slide Time: 08:01) 

 

You will see that all these rho m’s will come out and u would come out here. I am now 

taking laminar flows. Therefore, you have mu m by r d by dr r du by dr as the diffusion 
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term. This is the convection term (Refer Slide Time: 08:20) and the continuity equation 

would look like this. 

(Refer Slide Time: 08:11) 

 

Now, we can solve these two equations by similarity method, where we define stream 

function x eta psi x eta equal to nu multiplied by f eta and eta equal to C into r by x. U 

equal to 1 over r d psi by dr would become C square nu m by x f dash by eta v equal to 

minus 1 over r d psi by dx C nu m by x f dash minus f by eta. Now, the boundary 

conditions are at the axis and there is no, v equal to 0. You have f as 0 and also f dash 0 

is 0 and f dash infinity is equal to 0. So, these are boundary conditions for the similarity 

variable f. The substitution gives similarity equation, if we make substitution for u and 

calculate d psi by dy and so on. 
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(Refer Slide Time: 09:19) 

 

If you make this substitution here, then the two equations give us the following 

transformations, in terms of similarity variable f f dash divided by eta square minus f f 

dash double dash by eta minus f dash square by eta equal to d by d eta. It can be 

represented as d by d eta equal to d by d eta f double prime minus f by eta. Combining 

these two, it can also be written as d by d eta of f double prime minus f by eta plus f f 

dash by eta equal to 0. 

If I integrate this from 0 to eta, which is going from axis of the jet to some radius and the 

boundary conditions are f 0 and f dash 0 are 0, we get simply this. It will transform to f f 

dash equal to f dash minus eta f double prime. The solution is f equal to eta square over 1 

plus eta square by 4 f dash, which is of interest. This is the velocity in the jet f dash equal 

to 2 eta over 1 eta plus eta square by 4 and f double prime is so on and so forth. 
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(Refer Slide Time: 10:47) 

 

Therefore, we can interpret u, which requires f dash and v. It requires f dash minus f by 

eta in the following manner. 

(Refer Slide Time: 09:19) 

 

Here, u will be C square mu m divided by x in to 2 over 1 over eta square by 4 square. V 

would be given by this expression as eta minus eta cube by 4 divided by 1 plus eta 

square by 4 square into C nu m by x. 
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(Refer Slide Time: 11:18) 

 

Our next task is to estimate what is C. To do that we multiply momentum equation by r 

and integrate for r equal to 0 to r equal to infinity. 

(Refer Slide Time: 11:30) 
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(Refer Slide Time: 11:40) 

 

You will see that the momentum equation that we have is multiplied by r. It is written in 

conservative form and then integrated from 0 to r. You will get d by dx of 0 to infinity 

rho m u square r dr equal to rho m v u r infinity minus rho m v u r 0 and likewise, the 

gradient terms. Now, you will see these terms are absolutely 0 because at r equal to 

infinity, u is 0. So that is 0 and at r equal to 0, v is 0. That is 0 at r equal to infinity and 

du by dr is 0 because u itself is 0. At the axis symmetry, du by dr will be 0 and both this 

term as well as this term vanishes. As a result, all we get is 0 to infinity rho m u square r 

dr and it should be a constant. 

If I now multiply this by 2 phi, then you will see this is nothing but the jet momentum 

rho m u square r dr into 2 phi r and integration. So, substituting for u, which is this 

expression here, I can show that the integration would give me 16 by 3 pi rho m rho nu 

m square C square and that would be equal to constant. With x, it will amount to rho 

naught into U naught pi by 4 D square. Here, rho naught and U naught are the density 

and velocity at the entrance to the jet. This is a constant and therefore, I can now 

determine C in terms of jet momentum. I can also determine it, in terms of Reynolds 

number. So, C is equal to root 3 by 8 Reynolds rho naught by rho m raise to 0.5 or in 

terms of jet momentum, where Reynolds number is U naught D divided by nu m eta. 
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(Refer Slide Time: 13:35) 

 

Remember, what was eta? Eta is C into r by x (Refer Slide Time: 13:37). If I substitute 

for C, I would get eta equal to that definition u star, which is an … I can now write u also 

as u star equal to u x by nu m in this manner - in terms of Reynolds number and u over U 

naught would be 3 by 32 D by x Re 1 plus eta square by 4 raise to minus 2 rho naught 

divided by rho m. This is u divided by U at inlet. It will be function of x and it will be 

function of… You can see, as x increases, u is decreasing. At the same time, radius y 

increases, u decreases. It will be maximum, when eta is equal to 0. So, u over u max 

would simply be 1 over 1 plus eta square by 4 whole square. 

Since, we do not know where the edge of the jet will be, it is customary to define what is 

called half jet-width. So, where u over u max will be equal to half eta, it would assume a 

value of 1.287. So, you can see 1.287 square divided 4 plus 1 whole square would give 

you 1 by 2 and therefore, eta half equal to 1.287 is dimensionless and it is jet half width. 

So, this is by convention and we say eta half characterizes the jet-width r half. So, r half 

by x will be eta half divided by C equal to 1.287 8 by 3 Reynolds rho naught by rho m 

raised to minus 0.5 equal to 5.945 divided by Reynolds rho naught by rho m raise to 

minus 0.5. It is nothing but tan alpha, which is what we call as the jet spread angle. 
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(Refer Slide Time: 15:55) 

 

You will recall that I had shown you the jet spread. So, r half divided by x and 

corresponding x will simply give you the angle of the jet. 

(Refer Slide Time: 13:35) 

 

It is obvious that bigger the Reynolds number, smaller would be the jet spread angle. 
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(Refer Slide Time: 16:15) 

 

Now, we want to turn to the prediction of length and r f. Assuming Louise number equal 

to 1 and making simple chemical reaction, all equations can be rendered in conservative 

form of this type. We have done this many times and phi will be simply be omega fu 

minus omega ox divided by R st equal to h m in plus delta H c omega fu. It will also be 

equal to u over U naught because our momentum equation itself is in conserved property 

form. It does not have a pressure gradient and so phi can now represent both the mass 

fractions. It can represent enthalpy and it can represent velocity. 

Now, to locate the flame, we define what is called as the conserved scalar phi equal to f. 

Here, f is defined as phi minus phi A divided by phi F minus phi A equal to omega fu 

minus omega ox. Now, suffix A implies the air stream and suffix F implies the fuel 

stream. So, omega fu minus omega ox R st divided by omega fu minus omega ox R st in 

the air stream. The same quantity is in the F stream, the fuel stream and the air stream 

Now, you can see omega fu in the air stream would be 0, whereas omega ox in the air 

stream would be 1 because omega ox represents air. So that would be 1 and this will be 1 

divided by R st omega. Fuel in the fuel stream is 1, whereas omega ox in the fuel stream 

is 0. So, this will be simply 1, as you can see here and this would again be 0 and this 

would be 1, so you get 1 by R st. 
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Essentially, f is often called as the mixture fraction. It can be given as omega fu minus 

omega ox divided by R st plus 1 over R st divided by 1 plus 1 over R st. This is by taking 

phi equal to omega fu minus omega ox R st and f is given by that. 

(Refer Slide Time: 18:34) 

 

Now, the flame is located where omega fu minus omega ox divided by R st is 0, where 

the fuel and oxygen are in stoichiometric proportion. As we have seen, stoichiometric 

proportion means omega fu will be equal to omega ox by R st. So, f equal to f stoich will 

be equal to 1 over 1 plus R st and that is the edge of the flame f. It will be equal to f 

stoich plus omega fu divided by 1 plus 1 by R st inside the flame. Now, f will be equal to 

f stoich minus omega ox divided by R st divided by 1 plus 1 plus R st and this follows 

from this. 
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(Refer Slide Time: 19:20) 

 

The flame edge would correspond to simply omega fu minus omega ox equal to 0. 

(Refer Slide Time: 18:34) 

 

It would be equal 1 over 1 plus R st. This shows outside of the flame, where f lies 

between 0 and f stoich and whereas inside the flame, f lies between 0 and 1. To see this 

graphically, we draw a graph of f equal to 0 to f equal to. I have shown f stoich because 

R st for a given fuel is known that is oxi air to fuel ratio is known. Therefore, f stoich can 

always be plotted on this f. It is dimensionless fraction and it can only go from 0 to 1. 
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You will see that on the outside of the flame, this is the variation of oxygen up to f 

stoich. At the flame front, the oxygen disappears. So, outside the flame, there is oxygen, 

but it will disappear at f stoich. The fuel is inside and it would go on decreasing from 

central line to the edge of the flame. The product would go on increasing up to the flame 

edge and then would decrease the temperature. It would be T infinity in the outside; it 

will increase to T at the f stoich and will again decrease. 

Now, omega fu minus omega R st need not necessarily be a single value. There can be a 

range of values of omega fu and omega ox, where the difference omega fu minus omega 

ox divided by R st is equal to 0. In fact that is what is often found and that is what I have 

shown here. The fuel fraction would also appear little bit on the outside, very close there 

to f stoich. Oxygen would appear little bit on the inside and this zone is the flame 

thickness zone; the flame edge thickness, which you often see. For all practical purpose, 

we are going to say that the flame edge is a very sharp surface and f equal to f stoich is a 

very sharp surface. 

(Refer Slide Time: 21:48) 

 

Now, if we take phi equal to h star equal to h m delta H c omega fu, where f is equal to h 

star. You will see that I will get h m minus f delta H c omega fu. It is the same quantity 

in the air stream, the same quantity in the F stream and same quantity in the air stream. 

So, this would simply be cp m T minus T infinity delta H c omega fu because, remember 

there is no fu in the air stream. It is cp m T naught minus T infinity because in the air 
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stream, the temperature is T naught and in the fuel stream, fu is equal to 1. So, you get 

delta H c here, whereas there is no fu in the air stream. So, delta H c will be 0 and h m in 

the fuel stream minus h m in the air stream is cp m T naught minus T infinity. 

Thus noting that r f corresponds to eta f C r f by x and f stoich. Here, r f is equal to 0 at x 

equal to L f. We can say that phi is equal to u over U naught f h star. It is equal to 3 by 

32, which is the solution that we had written earlier. The solution to phi would be simply 

equal to u over U naught for all variables phi. I have written (Refer Slide Time: 23:10) 

that as phi equal to u over U naught and all that sort of thing here. 

At r f, if I replace eta by as eta f, then I can recover r f by x equal to 16 by 3 raised to 0.5 

Re into this density into that expression. Here, f stoich is of course 1 over 1 plus R st and 

setting r f equal to 0. If I set that to 0, which is essentially means this quantity is equal to 

1, then x equal to L f. I will get length of the flame divided by diameter equal to 3 by 32 

rho m naught by rho m Re f stoich, when f stoich is 1 over 1 plus R st. What this shows 

is that L f would increase with Reynolds number of the jet. The higher the velocity of the 

jet, longer will be the flame. 

(Refer Slide Time: 24:16) 

 

Now, turning to turbulent jet flame, let us look at what happens with increasing flame 

length and increasing flame velocity. Experimentally, for the first time, a scientist called 

Hutton documented it. He showed that in the laminar flames, the flame length increase 
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almost linearly with nozzle velocity. As we have shown on the previous slide, we had 

shown here that L f would almost linearly increase with velocity U naught. After a 

certain velocity, the flame length actually decreases. When the flow is completely 

turbulent, the flame is actually independent of the nozzle velocity. In turbulent flows, 

turbulent jets flames - L f is almost constant that is the length of the flame is almost 

constant. 

We have something to think about here, how we can predict the turbulent jet flame? The 

radial distribution of u is nearly uniform over greater part of the length. Experimentally, 

it is very difficult to identify the flame length because the turbulent flame is never 

steady; it is unsteady and the edges are very jagged. So, you get the flame, which is 

oscillating in the actual direction. You can only take photographs of that to measure what 

sort of time average and flame length, if you like to observe from photographs. 

The previous equations that we had used for laminar jet flame applies for turbulent flow 

also. The only thing we have to use is effective values of viscosity or kinematic 

viscosity, thermal diffusivity and mass diffusivity. As I show here, the equations of the 

slide 3 will apply. The only thing is the effective values will be used as mu effective 

divided by Schmidt number. Effective thermal diffusivity will be mu effective divided by 

Prandtl number. In gases, Schmidt number and Prandtl number under turbulent range is 

point about 0.9 and we have seen that in turbulence modeling part of the course. 

(Refer Slide Time: 26:47) 

 



 19 

We now need to define mu effectively. Now, the simplest formula for mu effective is 

0.01 into rho m into u infinity minus u actual. Here, u actual is the velocity of the jet at 

the axis and u infinity is a co flowing jet velocities. 

(Refer Slide Time: 27:18) 

 

For example, I may have a jet, which is like that and there is a parallel stream at u 

infinity. Sometimes, you do get the co flowing streams. We define u axis, u x and u 

infinity. 

(Refer Slide Time: 26:47) 
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The turbulent viscosity would be given as 0.01 rho m u infinity minus u ax delta. This is 

a simplest form of the turbulent viscosity specification. It was proposed by Spalding in 

the book - Combustion and Mass Transfer, Pergamon Press at Oxford in 1979. For 

stagnant surrounding, u infinity is 0 and u ax will be u max. From experiments, it is 

found that the jet width delta divided by r half the jet half width is about 2.5 in turbulent 

jets. Therefore, if I substitute delta for delta and set u infinity equal to 0, then you will 

see I get mu effective equal to 0.0256 rho m u max r half. As you can see, r half can only 

be a function of x u max. Likewise, it can be a function of x and therefore, this is not a 

function of r. 

Essentially, what we have said is that mu effective is constant across the width of the jet. 

It may vary with x and we will see whether it does or not from all our solution. We will 

apply, if we assume constant properties. Since, mu effective is also nearly constant, we 

will simply say change mu to mu effective. You will get u star max equal to u max by 

mu m equal to Re turbulent square r half by x. It will be again given by that where Re is 

replaced by Re turbulent. What is Re turbulent? It will be rho m U naught into D divided 

by mu effective, which is 0.0256 rho m into u max r half. From this, I can get u max over 

U naught. It will be equal to c 6.57. Remember, r half will get cancelled and 6.57 D by x 

rho naught by rho m is raised to 0.5. 

(Refer Slide Time: 29:57) 
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Now, combining this with u star max, I will get u max over U naught square equal to that 

or r half by x equal to 3.662 divided by 6.57 square is equal to 0.0848. So, r half is 

definitely a function of x. In fact, it increases linearly with x as r half divided by x 

0.0848. In our effective viscosity formula, r half will vary with x. Now, let us see how u 

max will vary. 

(Refer Slide Time: 26:47) 

 

The results agree very well. This particular result agrees very well with experimental 

data, when x by D is greater than 6.5 because the initial range from outside the mouth of 

the jet, r half is largely governed by ellipticity, whereas we have used parabolic 

assumption. Replacing r half and u max, it would be mu effective equal to 0.0256. 

Remember, I am replacing u max in terms of U naught D by x. In fact, you can see u 

max is inversely proportional to x. We just showed that r half is directly proportional to x 

Therefore, mu effective is not at all a function of x and in fact, it is absolute constant. 

We just showed that r half is directly proportional to x (Refer Slide Time: 31:37) 

Therefore, mu effective is not at all a function of x and in fact, it is absolute constant. 

That is why we our replacement of mu to mu effective is perfectly varied. All we are 

saying is - a turbulent jet is simply a laminar jet with a much more augmented viscosity, 

which is constant. Mu effective then becomes 0.01426. I have simply replaced here, u 

max equal to 6.57 U naught and so on. Here, r half is 0.0848 x. So, x and x gets cancel 

and we get u mu infinity equal to an absolute constant as 0.01426 U naught D multiplied 
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by rho naught rho m raised to half. Since eta half is 1.287, we can say that eta will be 

1.287 r over r half and u over u max will be 1 0.414 r over r half, whole square is raised 

to minus 2. So, this is the velocity profile of a turbulent jet u over u max equal to all that. 

Eta would be 1.287 r over r half and r half is simply 0.0848 into x. 

(Refer Slide Time: 32:39) 

 

Now, you turn to L f and r f prediction. A turbulent flame is essentially unsteady and its 

edges are jagged. As I said earlier, fragments of gas intermittently detach from the main 

body of the flame and flair outside is diminishing in size. Turbulence of x is not only L f, 

but also the entire reaction zone near the edge of the flame. Compared with the laminar 

flame, this zone is much thicker. We had identified that in laminar flame, there is a slight 

overlap, where f equal is equal to f stoich. 

In turbulent jets, this zone is little bit thicker and it is called as flame zone or the edge 

zone. It is somewhat thicker. This implies that if the time average values of omega fu and 

omega ox are plotted with radius r, then the two profile show considerable overlap 

around a cross over point f equal to f stoich, unlike the overlap in laminar flame. It is 

caused by finite chemical kinetic rays, however in turbulent diffusion flames, the overlap 

is caused by turbulence. In the presence of turbulence R, fu actually experienced is not as 

high as that estimated from R fu proportional to omega fu raise to x omega f raise to y. 
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This is because the fuel and oxidant are present at different times. Although the average 

values of omega fu and omega ox may be high, the actual reaction rates R and fu is 

found to be somewhat less. Therefore, how much it is less dependents on the probability 

of omega fu and omega ox meeting each other in the right proportions to cause a 

chemical reaction. So, the effective rates of burning are actually smaller. It would be 

calculated as omega fu raised to x and omega fu raised to y, which is the typical formula 

for burning the rate of a fuel. Therefore, we must allow for the probability of turbulence. 

(Refer Slide Time: 35:08) 

 

Since, all laminar solutions are applicable to time average quantities, we may write phi 

bar equal to u bar over U naught equal to f bar over equal to h star equal to all that and 

the solution is repeated. Now, let us see what actually happens. Let us consider mixture 

fraction f and let this be the time average value. 

In reality, the mixture fraction f would fluctuate between f high with a cap on top and f 

low with a cap on top. These are the instantaneous values. So, what we are saying is that 

at the edge of the flame, in the presence of turbulence or because of the turbulent, the 

mixture fraction would jump from a low value to a high value and high value to a low 

value almost instantly. When it reaches a high value, it will spend some time in the high 

value. When it is suddenly fluctuates to a low value, again it spends a little time there. 

This is called the square wave or the rectangular wave. 
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This is an assumed variation of f. So, f is equal to f mean plus f dash on the positive side 

and f dash on the negative side. So, f dash can be both positive and negative around f bar 

and this is what I have shown here. Although, f stoich of the fuel is 1 over 1 plus R st, it 

resides somewhere here on the f equal to zero and f equal to 5. So, the instantaneous high 

value may be here. The average value will be in between the two, but that may not equal 

f stoich. The average value of f may not equal the f stoich value. What are the deductions 

that we can draw for omega ox average, omega fuel average and T average. 

(Refer Slide Time: 37:17) 

 

With reference to the figure, the value of f truly fluctuates between a low value f and 

high value f. Let us assume that the fluids spend equal time at the two extremes and 

sharply moves from one extreme to the other. So, f bar - the average time and average 

value f will be half of high and low values instantaneous values. The fluctuation - f dash 

will be half of difference between high and low values. Thus, omega fu bar would be 0.5 

omega. Instantaneous value of low and high mass fractions of fuel are shown by the field 

circle. 
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(Refer Slide Time: 37:57) 

 

You can see that this is the value shown by the field circle. It would be greater than 

omega fu, which is the value corresponding to the local value. The time average value is 

over there; it is shown by the field value. It is greater corresponding to f bar, greater than 

f stoich. Now, we are taking the case of f bar greater than f stoich, but the story can be 

repeated, even when f bar is less than f stoich. 

(Refer Slide Time: 38:52) 

 

Likewise, omega ox is also greater than omega ox, which is 0 for bar greater than f 

stoich. You will see that the oxygen has already been consumed. So, the local value is 0, 
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but the time average value is somewhere there as omega ox time average. For f bar 

greater than f stoich, time average is greater than omega ox. T bar, 0.5 T instantaneous 

low plus T instantaneous high is less than T. You can see (Refer Slide Time: 39:07) that 

T bar is less than T, the local value T corresponding to f bar the time average f. 

The above observations revel we will also apply when f bar is less than f stoich thus in 

general finite amounts of fuel and oxygen are found when f bar is equal to f stoich when 

f bar is equal to f stoich you will get finite amounts of omega fu and omega ox at f equal 

to stoich and therefore we get a little overlap so if f stoich does not lie between f l 

instantaneous in f h instantaneous then t bar omega bar ox and omega will of course 

correspond to f bar values 

(Refer Slide Time: 39:54) 

 

The flame zone will be a finite volume enclosed by f l equal to f bar minus f dash when 

that quantity is equal to f stoich which is the inner edge of the flame flame edge rather 

and f high equal to f bar plus dash would equal to f stoich would represent the outside of 

the flame and thus f bar equal to f stoich surface will lie somewhere between the two 

surfaces so in this case the thickness of the flame edge is now being analyze 
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(Refer Slide Time: 40:39) 

 

How do we estimate f dash and that is the issue. From our results of laminar flow, we 

can say that r f out minus x will be f stoich minus f dash because that is the value of you 

can see for the outside. Now, f stoich will be equal to f dash plus f dash f bar plus f dash 

and therefore, f bar would be equal to f stoich minus f dash for inner surface. Here, r f in 

would be f stoich plus f dash into all this. For the stoichiometric case, when f bar will be 

equal to f stoich, you will get r f stoich given by that. 

(Refer Slide Time: 41:27) 
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Now, we have to determine f dash. It is determined from a mixing length formula and 

Spalding recommends that f dash is evaluated as mixing length, l m into df bar by dr 

under stoichiometric conditions. 

(Refer Slide Time: 41:44) 

 

So, f bar solution is already known to you; this is the solution to f bar. You take a 

derivative of this with respect to r and l m 

(Refer Slide Time: 41:53) 
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Now, l m for turbulent round jet is simply l m. It is equal to 0.01875 into r half for a 

turbulent round jet. This is found to fit the experimental data quite well. 

(Refer Slide Time: 42:16) 

 

There is no distance from the axis term here because there is no presence of the wall and 

therefore, the mixing length becomes 0.1875 into r half is essentially a constant. If we 

substitute for r half, then we will get f dash equal to… It would essentially become like 

that. At each x, we can predict f dash r f stoich by x whole square. Now, if I said r f in 

each case and if I said that equal to 0; that equal to 0 and that equal to 0, then I will get L 

f out L f in and L f stoich. 
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(Refer Slide Time: 42:47) 

 

That is what I have done here, so L f out divided by D would be 6.57 f stoich minus f 

dash rho naught by rho m. L f in would be 6.57 f stoich minus f dash. Since, this is 

subtracted; you will see L f out will be longer and L f in will be smaller. The 

stoichiometric case, where the in between length would be 6.57 f stoich rho naught by m 

equal to 6.57 1 plus R st rho naught by rho m. If L f stoich is regarded as the mean flame 

length, then knowing f stoich equal to 1 plus R st raised to minus 1. 

The flame length can be estimated for any fuel. Remember, air fuel ratio would vary; 

stoichiometric air fuel ratio would vary for the fuel under consideration. Therefore, we 

can say that we can readily predict the L f stoich. The most important thing is you can 

see this relationship does not show effect of Reynolds number at all. It as was observed 

by Hutton experimentally that in turbulent flames, the length of the flame remains 

constant and that has been shown. So, out of a very simple analysis, we have recovered 

the most important result. 

Although, the above relations are only approximate, they do embody the form of the 

experimentally determined empirical correlations. What do they look like? The 

experimentally determined correlations for L f show that F will be function of D. As you 

seen here, it will be function of R st. It will be function of rho naught by rho m and rho 

naught by rho infinity. In some cases, the experimental correlation and rho naught is 

essentially the density of the fuel divided by density of the surrounding gas rho infinity. 
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Rho naught by rho infinity is the density ratio, which can be different for different types 

of fuel in diffusion flame. Except for that ratio, we have not been able to identify rho m 

and rho infinity because we assumed constant property ratio. With this, I conclude the 

lecture on flames and I also conclude the entire course on convective heat and mass 

transfer. 

In the first 20 lectures, I covered laminar flows, both external flows and internal flows 

with and without suction and blowing in the presence of pressure gradients and wall 

temperature variations. We also considered laminar internal flows, both in simple ducts 

as well as complex ducts of non-circular cross section. We were able to calculate Nusselt 

number, both in the presence of circumferentially varying boundary conditions or 

actually varying boundary conditions. 

We moved to the next 10 lectures, where we saw turbulent flows and the formal aspects 

as well as turbulence modeling and also phenomenological arguments of flow near the 

wall. It gave us the universal laws of velocity distribution and that of temperature 

distribution close to a wall, which enable us to calculate the Nusselt number and friction 

factor for a turbulent boundary layer as well as turbulent ducted flow. We moved to the 

convective mass transfer problems, in which we first of all postulated and considered the 

full boundary layer flow equation. We said there are simplified forms, which are good 

proxies for mass transfer problem that can be derived. 

The Reynolds flow model was found to be a very good proxy for the full boundary layer 

flow model. Using that model we solved several problems, but of course, diffusion mass 

transfer is as important as convective mass transfer. Diffusion mass transfer is simply a 

special case of a boundary layer flow model, which we modeled as the Stefan flow 

model and found that the results from there. It gave us the logarithmic form of the 

connection between mass transfer rate and spalding number B. In between these two - 

Reynolds flow model and Stefan flow model, we also invoked the quake flow model, 

which showed us why property variations and large mass transfer rates are required. The 

model was successful in showing us the trends of property correction that should be 

applied. 

In the last two lectures, I considered natural convection heat and mass transfer. In the 

present lecture, I considered the case of heat and mass transfer in a free jet and that is the 
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case of a jet diffusion flame. I hope you enjoyed these lectures and I also hope that this 

will promote you to take up a career in the field of convective heat and mass transfer. 

Thank you very much and all the very best wishes to you. 


