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We shall take up the application of the Couette flow model. Couette flow model is a 

proxy for boundary layer flow model, but with a very drastic assumption, but which, 

nonetheless helps us to assess, what is the effect of property variations on mass transfer. 
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So, in effect you recall that, we said that the recommended practice for property 

correction is to take the ratio of the molecular weight at the w state and an infinite state 

and raise it to a power. Today, we are going to look at that proposition whether there is 

any theoretical justification for that, so what we will do is, we will consider a mass 

transfer situation in which a certain gas is being injected into the laminar boundary layer 

of air, and in the t state we have the gas, the gas may be pure in which case omega t will 

be 1, or it may be a mixture of air and the gas in which case omega t will be diffraction; 

we do the same thing for a turbulent boundary layer. 



And in both these I shall show that the analytically derived result will actually show that, 

the mass transfer coefficient g is in fact influenced by the molecular weight at infinity 

divided by the molecular weight at w state, and then finally, we will solve a practical 

problem in which there is a benzene evaporation in a convective environment. So, the 

main objective of application of the convective of the Couette flow model to convective 

mass transfer is really to study effect of fluid property variations. 
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So, let us consider the first case of a…, let us say laminar Couette flow of air as it shown 

here, and in Couette flow as you know the velocity profile is assume linear with velocity 

profile in u infinity at a distance delta from the wall, there is a gas being injected here at 

the wall. 

So, consider a laminar Couette flow of air in which a gas with a specified omega gas t 

here, omega t is injected, develop the relationship g by g star as a function of b when the 

gas is either c o 2 or helium or hydrogen. Now, why we are chosen this is that the three 

gases is that, molecular weight of c o 2 is, of course, 44, whereas molecular weight of air 

is 29, molecular weight of helium is 4, and that of hydrogen is 2. 

So, you can we have gases whose molecular weight is both higher or lower as well as 

lower than that of air, so this is this will be a good case to see how the how do this 

property variations affect g over g star. So, in the Couette flow model all derivatives with 



respect to x are 0, so the mass conservation equation will give d rho u by d x equal to 0, 

which implies that d rho v by d y equal to 0, and which means that rho v is a constant 

with respect to y rho into v is constant with respect to y. 
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And therefore, n w the mass flux at the wall will be rho w v w equal to rho v equal to 

constant; and similarly, the species transfer equation which as you now is d by d x of rho 

u omega plus d by d y of rho v omega equal to d by d y of rho m d d omega by d y, and 

since there is no chemical reaction, there is no r term here, but since all the gradients here 

are neglected in the x direction, therefore, d by d x term vanishes, and rho v is a constant 

equal to n w; and therefore, we will have n w equal to d omega by d y equal to d by d y 

of rho m d ah d omega by d y that would be the scalar transport equation for the species 

omega g, the gas species being injected. 
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N w d omega g by d y equal to d by d y rho m d d omega g by d y, should I integrate that 

from 0 to y, then you will see the left hand side will simply integrate to n w into omega g 

y minus omega g at w, because n w is constant. And this term will integrate to rho m d 

omega g by d y at y minus rho m d omega g by d y at the wall w; now, we will replace 

this from the boundary condition at the wall, and that is what is shown on the next slide. 

So, we know that n w is rho m d omega g d omega g by d y at w divided by omega g w 

minus omega g t, and therefore, that quantity is simply n w into omega g w minus omega 

g t. 
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So, if I substitute that in this expression here for that, then you will see i will get n w into 

omega g y minus omega g w equal to the gradient diffusion here at any y minus this 

quantity which is n w into that denominator. So, you will see n omega g w gets cancelled 

on both sides, and therefore I have rho m d d omega g by d y at any y equal to n w into 

omega g y minus omega g t. 

Now, here d is constant, we assume that the diffusivity is not going to be function of 

omega g, also the pressure and temperatures are absolutely constant, and therefore there 

is no which means this is a case of a pure injection of a gas, there is no variation of 

temperature or pressure in the y direction, and therefore d will be constant. But the 

density will be function of the mass fractions, because rho m is equal to p by r u t into 

molecular weight of the mixture, and the molecular weight of the mixture is given by 

omega g over m g raise to minus 1. 
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Basically what I am I am saying is M mix sigma omega j m j raise to minus 1, and 

therefore that will be equal to 1 over [om/omega] omega g divided by m g plus omega air 

divided by m air, and that would be nothing but omega g over m g plus omega 1 minus 

omega g over m a, which will transfer to m a m g divided by m a omega g plus 1 minus 

omega g into m g. 
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So, that will be the mixture molecular weight which will vary with omega g in this 

manner, p by r u t remains as it is p and t are constant, and m a m g divided by m a 



omega g plus m g 1 minus omega g; so, should I substitute for this rho m here and then 

integrate, then you will see this is what would happen. 

(Refer Slide Time: 08:56) 

 

Basically, you will see that, what I have got here is into m g m a divided by m a omega g 

plus m g 1 minus omega g into d omega g by d y equal to n w into omega g minus omega 

g t; and therefore, should I reorganize this equation you will see I will get d omega g 

divided by omega g minus omega g t into m a omega g plus m g 1 minus omega g equal 

to n w p by r u t into 1 over m g m a. 

So, that is what I have got. Now, I am going to integrate this from w to infinity state, and 

likewise this one from w to well d y here from 0 to delta, the integration will go from 0 

to delta, and this will then become n w p r u t delta divided by m g m a, so that is what 

you will see on the slide here. 
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Now, the left hand side which I have shown here on in writing, this would transform to a 

time, this will be a quadratic like denominator a times omega g square plus b times 

omega g plus c, that is what it will be, and that is what i have written here; so, you can 

see here it will be n w r u t delta divided p m g m a d and a omega j square plus b omega 

g plus c, where a is equal to m a minus m g, b is equal to m g minus omega g t which is 

given into m a minus m g plus c is equal to minus m g omega g t. 

So, the left hand side integration which is from wall state to infinity state, and in the 

infinity state there is no gas there is pure air, and therefore that is 0; and the left hand 

side is integrates to one over under root b square minus a c l n of 2 a omega g plus b 

minus b square minus 4 a c, and likewise here with plus sign. 

Now omega g w to 0, and therefore, you get one over m g omega g t into m a minus m g 

l n 1 plus b plus omega g t into b m a minus m g minus 1 takes a little is…, simply 

substituting a b and c, and here, and what would be b in the present case omega g 

infinity, which is 0 minus omega g wall divided by omega g wall minus omega g t as 

usual, which would be nothing but omega g w divided by omega g t minus omega g wall, 

and what would be omega g, therefore, omega g wall itself can be given as omega g t 

into b over 1 plus b; we will make use of this relationship in the next slide. 
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So, if c so from the Couette flow model, we know that n w is equal to g b, and I can 

replace r u t by p into m g as simply 1 over rho g well known, and therefore the right 

hand side will simply become g b delta divided by rho g m a d rho g m a d the m g part 

goes out r u t goes out, and p goes out, and therefore you get and d is the diffusion 

coefficient which is which you said is constant. 

So, if I now integrate the left hand side and right sides, then you will see I will get…, I 

can form reformulate this as g delta divided by rho g into diffusivity is equal to m a by m 

g into l n 1 plus b star over b star, where b star is actually given by b into 1 plus omega g 

t m a by m g minus 1, of course there is a little algebra here in rearrangement of about 5 

or 6 line, and this is the modified driving force b star which is in…; if the properties were 

constant and we did not worry about molecular weight difference, then m a by m g 

would be 1 and this term would simply cancel out. 

Also it shows that if omega g t was very very small, let us say very very small fraction, 

let us say I will explain their point one or something like that, then b star would simply 

equal b, so the modified b star very much depends on the concentration of the gas being 

injected from the t state, and therefore g over g star would simply become l n 1 plus b 

star over b star. 



G over g star of the variable property solution would be b over b star, I have written this 

equation for g when v is finite and g star as you know is when v is tending to 0 or b star 

is tending to 0, and therefore g over g star ah of the variable property you have case 

would be l n 1 plus b star over b star is the answer to our problem. 

Now, g over g star of the constant property case would, of course, be l n 1 plus b by b as 

you will recall, we have done this several times before, so here I will use v p and c p as 

subscripts to represent that this is a variable property solution, whereas this is a constant 

property solution. Now, let us see what does it imply. 

So, if we take the case in which omega g t is equal to 1, then what would be the g over g 

star verses b relationship; so, if b is equal to 0, then in the constant property case g over g 

star would be 1, and so it would be in the variable property case irrespective of the gas; 

remember, b star is a function of the omega g t, and the molecular weight of a and the 

gas. 
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So, here I am considering the variable property solutions for carbon dioxide, helium, and 

hydrogen; and here I am considering the case of constant property, where of course the 

molecular weights do not matter. So, if b is equal to 0.25, then the constant property 

solution is go like that, simply l n 1 plus b by b, whereas the variable property solutions 



go like that, so you can see for c o 2 g over g star of the variable property is greater than 

g over g star of constant property through out through out. 

Converse is the case when molecular weights are small that is helium has a molecular 

weight of 4, and you can see that g over g star on the other variable property case is less, 

than the values for constant property case, and that is the reason why we worry about, 

and you can see the difference increases as b increases; you can see it is .4144 here for 

helium, whereas it is .462 in factor of nearly 3, and the factor becomes even bigger when 

we go to hydrogen; each of this case suppose I can what is implied here is omega g w; 

so, when omega g t is one and b is very very small then, of course, omega g w is small, 

but it goes on increasing as b increases. 

So, the value of omega g at the wall goes on increasing by omega g t is equal to 1; so, 

you will see omega g t equal to 1 implies that the gas is the only transfer substance, and 

and b star would then be b into m a by m g, because you will see that if omega g t is 

equal to 1, you will get a 1 minus 1 cancels out, and therefore you will simply get b into 

m a by m g, and that is what I have said here. So, b is b star is simply augmented by m a 

by m g, g over g star variable property of c o 2 is greater than g o g star, because m c o 2 

is greater than m air, whereas for helium and hydrogen this trend reverses and omega g w 

increases with p, so we have shown that g over g star in a laminar boundary layer will be 

affected by m a by m g. 
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Now, how is m a by m g related to m infinity by m w, and that is what our interest is; but 

before we do that let us look at the value of omega g t being very very small, so in this 

case b star almost equals b, because as you will see here this is .01 very very small value, 

and therefore, it will try to annihilate the effect of m a by m g to some extent, and that is 

what we will see here. 
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So, for example, for c o 2 you will see that the constant property and variable property 

solutions go almost same, very little difference, and so is the case with variable hydrogen 

and helium. 

So, when omega g t is very very small, apparently it does not matter whether we allow 

for variable properties or not, so this is a very important deduction that we have got; just 

a reminder that omega g t equal to .01 implies that the gas is in the transfer substance is a 

very very small fraction and the rest is air. 

So, all are very close to what the constant property solution will be; so, if you have a 

very weak concentration of the gas in the transferred substance states, then constant 

property solutions are quite valid only when the transferred gas is the only substance 

being transferred, then you have to worry about correcting property corrections alright 

next slide. 
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Now, let us try and interpret m a by m g in terms of m mix infinity by m w, now what 

will be m mix in the w state, it will be simply as you will see m g into omega g w into m 

a into 1 minus omega g w, and m mix infinity will be m a, because omega g infinity is 0; 

and therefore, the from slide four we will get b star is equal to 1 plus omega g t m a by m 

g minus 1. and b star over b would be given by all this algebra, I have replaced m a and 

m g in terms of m mix w and m mix infinity. 



And therefore, g by g star v p divided by g star g by g star c p will be l n 1 plus b star 

over b star into b over l n 1 plus b, and this clearly shows the influence that of m mix w 

divided by m mix infinity on the value of g over g star c p, b star over b would be given 

by that, and the rest is this. 

Now, if omega g t is equal to 0 or tending to 0 then, of course, b star is equal to b, but if 

omega g t is 1, then as you know b star is equal to b m a by m g. Now, here what I have 

trying to do is to simply show that how does m mix w and m mix infinity influences 

arise; for specific cases we have to find a proper property correction; and therefore, in 

the Reynolds flow model we had recommended that the constant property solutions be 

corrected by m mix w by m mix infinity. 
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So, in laminar boundary layers we have shown that the ratio is indeed important. What 

about turbulent Couette flow; now, in the turbulent Couette flow the scalar transport 

equation will be n w omega g minus omega g t equal to rho m into effective diffusivity 

into d omega g by d y, and where rho m into d turbulent would be rho m into nu t ref 

divided by Schmidt number in the turbulent case, this is the effective the turbulent 

Schmidt number. 

But now, from van driest model what will be nu t reference, nu t will be mu t by ref into l 

m square equal to l m square into d u by d y; and in our case d u by d y is a constant, 



because we are using a Couette flow model; if I were to interpret l m square substitute 

for l m from van driest model, it will be nu t whole square divided by u tau into kappa y 

square into 1 minus exponential y plus by a plus whole square multiplied by c, which is d 

u by d y, and this will become c times u ref square; this would be the case the first 

expression is for when y plus is less than 26; the second expression where the mixing 

length becomes constant with respect to y, y plus is greater than 26. 
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Now, what is this factor nu c times nu ref divided by u tau whole square, c into new ref 

divided by u tau square will be c times nu ref divided by u tau whole square will be c 

times nu ref square into u tau divided by u tau square is simply rho ref divided by tau, 

and as you know tau wall will be mu times d u by d y at the wall, but that is equal to mu 

times c, and therefore you will see c times nu ref square rho ref will divided by mu ref 

divided by c, so c and c gets cancel, mu ref and rho ref gets cancel with 1 nu nu ref, and 

that will be equal to nu ref itself. 
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So, that is what I have shown here at the bottom of the slide that this whole factor c nu 

ref whole square by nu tau is nothing but nu ref itself; so, nu t ref the turbulent viscosity 

divided by density would be equal to the laminar viscosity divided by the density into 

these functions of y by plus for y plus greater than 26 it will be simply a constant. 
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And therefore, substituting for d t and rho m which is a function of omega g, and 

therefore, omega y we will have n w equal to omega g minus omega g t, in these 

expression I am now replacing d t, I will have…, and if i take rho m d common then I 

will get one plus nu t ref divided by Schmidt turbulent Schmidt number divided by 

diffusion coefficient into omega d omega g by d y. 

And if I have to substitute for nu t ref and also rho m first of all I will get d p m a by m g 

divided by r u t u tau by nu ref m a by omega g plus m g into 1 minus omega g into f into 



d omega g by d y plus, and this big factor f is simply 1 plus s c by s t kappa y plus 

square, this is a little algebra that is easy to perform. So, you will see that the f function 

will vary with y only for y plus less than 26, but would remain constant for y plus greater 

than 26. 
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So, now, if I transfer, if I carry out the integration in the in just as i did in the previous 

case in which I bring omega g minus omega g t on this side, and put it under d omega g 

by d y and integrate from 0 to delta plus, then you will see if I take n w equal to g b then 

p by m g r u t equal to rho g again, and u tau equal to u infinity under root c f x by 2, then 

the left hand side would be g over rho u infinity under root 2 by c f x Schmidt number 

into int, where int is 0 to delta plus into d y plus by f, which is means sorry which means 

I have simply transferred f on the left hand side with a multiplication d y plus. And the 

right hand side would be m a by g into integration of all this and we have carried out this 

integration before for laminar boundary layer, and it would remain the same it will be l n 

1 plus b star over b star, and b star would b into 1 plus omega g t m a by m g minus 1. 

Now, taking a plus equal to 26, that is assuming a smooth wall, and the turbulent 

Schmidt number equal to .9, this in this factor integrating factor can be integrated once 

for all, because as you will see f is simply a function of y plus; so, one can integrate that 

depending on what the molecular weight is, so the int is equal to 9.62 because remember, 

the Schmidt number would be a function of molecular weight of the gas being injected, 



you already know that I have given you the values of diffusion coefficient for c o 2 and 

air, so one can readily workout the Schmidt number; so, when Schmidt number is .96 

which is for c o 2, the int factor is 9.62, but for hydrogen and air it is 14.57, and for 

helium and air well almost 14 point for both of them, because the Schmidt number for 

both of them is .22. 

So, you can see that the factor int makes a significant contribution to the left hand side, 

because it depressed, it reduces, I mean it is 9.62 or for c o 2, and 14.57 for helium or 

and hydrogen. 
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So, as a result we can show now that g v p divided by rho g u infinity, which is a kind of 

a mass transfer Stanton number if you like into under root 2 by c f x into Schmidt 

number will be 1 over int into l n 1 plus b star by b star or I can say that g v p by g star 

variable property will divide by g over g star constant property will again be equal to l n 

1 plus b star by b star into b over. 



(Refer Slide Time: 25:06) 

 

So, this result is again same as that for a laminar boundary layer, this is because it is 

assume that the value of int is the same for both constant property and variable property 

conditions, this is an assumption we have been making, that these the mixing length 

distributions are not influenced by whether there is a mass transfer, whether there is a 

property variation or there is int any. 
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The int factors remain the same both the under variable and constant property conditions, 

the int factor simply give you resistance to mass transfer due to turbulence. So, noting 



that g v p is significantly influenced by a integrating factor which is function of Schmidt 

number Schmidt number, so the actual value of g over g star v p will be influenced by 

the Schmidt number. 
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We now take up a problem, benzene evaporates from the outer surface of a circular 

cylinder, so let us say I have a circular cylinder like this on which a benzene has been 

put, and there is a cross flow across the across the cylinder, and therefore the benzene 

evaporates, the approach velocity v infinity is 6 meters per second. 



Now, from experiments for the same case of flow over the cylinder, heat transfer 

coefficient h cof has been determine to be equal to 85 watts per meter square kelvin, and 

this is when there is v w is equal to 0, that mean, there is no mass no mass transfer from 

the wall. But in the present case because of the evaporation there will be mass transfer, 

but on and there is experiment being conducted without mass transfer gave h cof of 85 

watts per meter square kelvin. And here the b has been found to be .9, that is this omega 

g infinity minus omega g w over omega g w minus omega g t has been found to be, or in 

this case actually it is 1, simply is 0.9. 
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So allowing for property variation estimate n w and value of omega w, so remember 

omega g infinity here is is 0, omega v w, omega v w, and omega g t being the only gas is 

minus 1, so that is equal to .9, that is what is been given to you. And that gives you 

omega v w equal to .4737 as the first transfer, that is what we want to get for omega w; 

and therefore, we take the mean concentration would be .2368, because remember omega 

v infinity omega g infinity is 0.  

And therefore, c p m would be 1.69 times mean specific heat, that is been given to you 

plus 1.01 into .7632 which is the, which is the specific heat of air, which gives you 1.171 

kilo joules per kilo grams kelvin. 



And hence the g star for this case is h cof v w equal to 0 divided by c p m would be .076 

k g per meter square second; now, m mix infinity is 29, whereas m mix w will be .4737 

divided by 78 plus .4263 divided by 29 raise to minus 1 or 41.28, so this is what we get 

as the mixture molecular weight in the w state. 
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If we were to apply our Reynolds flow model with property corrections, then you will 

see…, on this slide as you will see g over g v p over g star over g g star c p would be l n 

1 plus b divided by b into prandtl by Schmidt number raise to .37, because the nusselt 

number for pure heat transfer without mass without any suction are blowing where is as 

prandtl raise to .37, and this is a very well-known book by a well-known work of 

zhukauskas extensive work on flow over cylinders variety of prandtl numbers with and 

without property variations. 

And the concerned property correlation that zhukauskas has developed is n u c p being 

proportional to .37; and therefore, the firstly we must allow for prandtl and Schmidt 

number variations which are .71 and 1.71 as we calculated raise to .37; therefore, and 

then we must also allow for m mix infinity divided by m mix w were raise to minus .67 

So, you get l n 1 plus .9 divided by .9 into .71 divided by 1.71, .37 and m mix infinity is 

29, and this value we just calculated. So, you get .6525, and as a result gs v p will be g 

star which was calculated as h cofv w 0 divided c p as .0726 multiplied by 6525 equal to 



.0474 kg per meter square second, so this is what Reynolds flow model with property 

correction gives us. So, the effect of property variation is to reduce g v p compare to g c 

p; so, that now let us see what Couette flow theory advices us, and that is the calculation 

I have done on the next slide. 
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So, if we follow the Couette flow theory, which as you know is an approximate theory, 

then in this case b star would be omega g t is equal to 1 m a by m g as you know as a 29; 

and for benzene the molecular weight is the molecular weight for benzene is 78; so, you 

take 29 by 78 and put here one, and calculate b star, then you get .3346, .3346. 

And therefore, g over g star v p will be l n 1 plus b star over b star which is .8626; now, 

under a variable property conditions n with v w equal to 0, zhukauskas says that h cof v p 

will be h cof c p into prandtl raise to .25, and therefore, g v p would be g star c p into .71 

into 25 into .8626 equal to .0575. 

Now, this value is not the same as .474, but nonetheless it shows you this is greater than 

that, but in it nonetheless shows you that our model is able to show that g v p will be 

smaller than g c p, which is you know was only g star c p which is .0726 into 1 plus b by 

b only that factor would have come in; and therefore, our solution thus show that Couette 

flow model predicts the correct trend that g v p should be depressed compare to g c p 

compare to g c p. 



So, that is that is precisely what this result also shows, to that extent Couette flow model 

has justified the property correction recommended in the Reynolds flow model, which of 

course, which based on solution of boundary layer equations, the complete boundary 

layer equations under variety of conditions; and therefore, we do not expect the 

correction derived from Couette flow model to give us the same amount of reduction, but 

nonetheless it does show that there is a molecular weight effect or the effect of property 

variation is definitely to disgrace the variable property value of g. So, with this I 

conclude discussion of Couette flow. In the next two lectures I will consider the 

application of Reynolds flow model to various problems. 


