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Evaluation of g and Nw 

 

In the previous lecture, we saw how the Reynolds flow model provides the boundary 

conditions for the boundary layer flow model. And as you recall that, the Reynolds flow 

model is nothing but N w equal to g times b. So, today, our interest is to find out how to 

evaluate g and b so that we can safely assume apply Reynolds flow model for practical 

problem solving. 
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So, I will first consider the laminar boundary layers, then turbulent boundary layers, and 

then, give the overall procedure for calculating the mass transfer rate Nw. Now, consider 

laminar boundary layer with T w constant, it is a constant wall temperature. And with 

suction and blowing, but without viscous dissipation. 

Now, for this case, you will recall from our lectures on laminar boundary layers, that the 

similarity solution for constant properties is N u x divided by R e x to the half equal to 

minus theta prime 0 as a function of m, the pressure gradient parameter, prandtl number 

and the suction and blowing parameter b f, and b f as you will recall is nothing but V w 

by U infinity R e x to the half. And the Nusselt number is given h x X by k is equal to x d 

T by d y at the whole divided by T infinity minus T w. 

This corresponds to In our general mass transfer problem, this correspond to psi equal to 

T and because this is a single phase fluid, same fluid being blown or suck through the 

boundary layer, we would have omega k equal to 1. In other words, there are there is no  

mass transfer driven by a concentration gradient. And if you assume constant specific 

heats in all states, then this simply represents g gamma psi by d psi by d y at the whole 

psi infinity minus psi whole.  

And therefore, the Sherwood number g x X by gamma psi would be equal to x d psi by d 

y at the whole psi divide by psi wall equal to N U x. So, these are there is a clear 



correspondence between between heat transfer and the corresponding mass transfer, 

where presently the variable T is interpreted in terms of mass transfer g mass transfer 

coefficient g. 
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Now, this will enable us to convert all the data that we had computed for the heat transfer 

case to the Sherwood converted the Nusselt numbers to Sherwood numbers and also 

convert B f to the corresponding b psi for the general mass transfer variable. So, we can 

intepret B f for example, which is V w divided by U infinity R e x to the half; V w is 

nothing but N w divided by rho and therefore, N w by rho infinity R e x to the half, and 

N w is g times B psi divided by rho U infinity R e x to the half. 

I am going to now multiply this with x and divide by x as well as multiply by gamma psi 

and divided by gamma psi, then you will see, this is will became g x by gamma psi into 

gamma psi divided by mu into mu by rho U infinity x into R e x to the half b psi, but rho 

U infinity x divided by mu is one over Reynolds number and therefore, this will become 

equal to… this is Sherwood number; this is the gamma psi by mu R e x to the minus half 

into B psi. So, B f is equivalent to B psi with this multiplier this multiplier. 

And this shows that the driving force B psi is proportional to B f and hence the similarity 

solution to the psi equation can be interpreted as a Sherwood number divided by R e x to 



the half as a function of m mu by gamma psi which may be taken as Schmidt number 

and B psi the driving force based on a conserved property psi. 
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M again here is the pressure gradient parameter of course, but the Prandtl number is 

replaced by mu by gamma psi which is the Schmidt number and the B f is replaced by B 

psi, which is the driving force for conserved property psi. So, using the last relation, the 

constant property heat transfer solutions can be converted to mass transfer solution. 

So, consider for example, the case of B f equal to minus two m equal to zero and Prandtl 

equal to mu by gamma h equal to 1, these are given in lecture number nine and in slide 

ten and for this particular case, N u x R e x to the minus half equal to minus theta prime 

0 was read as was calculated as 2.1. And that would equal Sherwood into R e x to the 

half. 
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So, what will be B psi? As you can see from the previous slide, B psi would be B f 

divided by S h x R e x to the half into mu by psi and that is what I have done. 

So, mu by psi minus theta prime 0 into B f and this is 1over 2.1 into B f which is minus 

2.0; so this will become… mu by gamma psi here is 1, so that will be minus 0.9524. So I 

have this would be the exact conversion when mu by gamma h will be equal to mu by 

gamma psi. 



But if for example, if I now take different Schmidt numbers, so next slide shows 

convergence for mu over gamma psi equal to 0.7and m equal to 0. So, that is what I am 

going to do now. Remember here mu by gamma psi is same as mu by gamma h 1, so b 

psi would be…, whereas B f is minus 2; B psi is minus 0.9524. 
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So, let us see what the convergences are on the next slide. So, here are the convergence 

B f values are given; here these represent the suction negative values represent suction; 

the positive values represent blowing 0 of course, means no suction or blowing and these 

where the values computed in our lecture nine, minus theta prime 0 equal to 

1.52,0.872,0.570 and so on and so forth. 

The higher the suction, the greater were the Nusselt number as you can recall. Now, 

correspondingly B psi which is equal to s c Schmidt number into B f divided by minus 

theta prime 0 would become minus 0.921 and I am now taking mu by gamma psi equal 

to 0.7, then B psi would assume all these values; notice that for B f is equal to 0.5, B psi 

actually becomes equal to 6.77, because theta prime 0 is very very small. 

We can now calculate g over g star, essentially g star is 0.921, so g over g star would be 

minus theta prime 0 divided by 0.921. So, this 5.223 simply 1.52 divided by 0.29; 1.872 

divided by 0.291 is 3; 0.57 by 0.291 is 1.959, and 0.429 divided by 0.291 is 1.474 and 

then likewise here, 0.57, 0.368 and so on so forth.  



Most important thing to note is that, when B f is very large both on the negative side or 

positive side and likewise B psi is very large, g over g star does not at all equate to l n 1 

plus B psi by B psi. As you can see, this is 5.223, whereas this is 2.754 large variation; 

same thing at minus 1, same thing at minus 0.5, but for minus 2.5 and bigger values 

between say 0 and perhaps these two values will come much more close to each other. 

Similarly, at on the blowing side, 0.57 and 0.683 are reasonably close, but 0.368 and 0.5 

are widely apart and 0.1776 and 0.303 are again very widely apart. So, we can tentatively 

conclude that for minus 0.25, twenty five B psi g over g star is approximately equal to l n 

1 plus B psi by B psi, but for large mass transfer rates, that is, for large driving forces, 

the Reynolds flux model is not at all satisfactory and for this condition cases, numerical 

solutions are desirable. 

These observations also applied to other values of m and s c. So, by enlarge the whole 

idea of relating g over g star to l n 1 plus B psi by B psi, this type of convergence can be 

safely done if B psi values are small, let us say smaller than 0.2 or even 0.1 to be exact, 

but for any in larger values, we must seek alternative forms; we must seeks numerical 

solution, but there is a shortcut method and I will represent that to you very shortly. 
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Now, that was for m equal to zero and therefore, U infinity constant, what about if 

arbitrary variation of U infinity is there, what would happen? Then the Stanton number 

based on mass transfer, Stanton number as you know is Nusselt number divided by 

Reynolds Prandtl, Stanton number for mass transfer will be Sherwood number divided 

by Reynolds number into Schmidt number and that would equal rho U infinity x by mu, 

this is Reynolds x; this is x; this will be g x divided by rho m times diffusivity into 

Schmidt number which is nu times diffusivity. 
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So, you can see that the resultant thing will be g divided by rho m U infinity that is the 

mass transfer Stanton number. And Spalding and Chi have calculated this problem for 

arbitrary free stream variation and you will recall this formula, which we had developed 

for the case of arbitrary variation of U infinity using integral solutions and the same thing 

has been done for mass transfer by Spalding and Chi. 

For three values of Schmidt number 0.7, 5, greater than 5 in each case B psi equal to 0 of 

course, means no mass transfer B psi equal to minus 0.9 B, psi equal to plus 9 and so on 

so forth and the k 1, k 2, k 3 are given here; these are simply to be used if needed for 

calculating the mass transfer coefficient g, but the b value must be converted to B psi 

first as we demonstrated in the previous slide. 
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Now, let us turn to the turbulent boundary layers. Now, in turbulent boundary layers, we 

have gamma effective equal to gamma laminar plus gamma t, and gamma t is much 

much greater than gamma sorry gamma gamma l. And we have mu effective equal to mu 

l plus mu t, and mu t is much much greater than mu l as we have noticed all most of the 

order hundred in most problems of turbulent flow and therefore, the analogy between 

momentum and heat and mass transfers actually holds very well for much better in fact 

for turbulent boundary layers. 
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The turbulent heat transfer correlations for V w equal to 0 take the form of Stanton x V 

w equal to 0 equal to C Reynolds x to the power of minus m and Prandtl to the minus n 

this you remember, then from analogy, Stanton x V w equal to 0 would be g star over rho 

U infinity equal to C R e x to the power of minus m and Schmidt number to the power of 

minus n. 

And g over rho U infinity therefore, will be g star rho u infinity into l n 1 plus B psi by B 

psi and g star would be simply a heat transfer coefficient that V w equal to 0 divided by 

C p m into Prandtl divided by Schmidt raise to minus m. So, you can see now, how we 

can calculate and Schmidt is nothing but mu by gamma psi. 

So, we can actually get the effective value of g star if Prandtl number was equal to 

Schmidt number, then of course, g star would be exactly equal to h cof V w equal to 0 by 

C p m and Prandtl equal to Schmidt essential means [lewis/louis] number equal to 0 and 

this part of the result we had already shown in an earlier lecture. 
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So, what this shows is that, in turbulent boundary layers, you must account for Prandtl 

number and Schmidt number effects to the power of minus n. Of course, in gases Prandtl 

and Schmidt are very very close, but in other cases, they may be different. So, this is the 

way one obtains g star in a turbulent boundary layer from a correlation. So, deviations 

from g over g star equal to l n 1 plus B divided by B at large B w mainly occur due to 

variations through the layer. 
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In order to appreciate that, let us see what is B psi. B psi as you will recall is psi value in 

the infinity state minus psi value in the wall state divided by psi value in the wall state 

minus psi value in the t state. So, if I have this as w w, this as infinity state and this as t 

state, then a large B psi means that psi infinity minus psi w is very very large. 

In other words, this value and this value are separated significantly in the considered 

phase and therefore, it is quite in effect you can get a profile like that with the value of 

psi w here and value of psi infinity there. So, if these values are widely separated, it is 

quite likely that there would be property variations in the considered phase. 

So, the reason why g over g star is not equal to l n one plus B divided by B is simply 

because this relation was develop for constant property solutions as we saw earlier and 

therefore, it only applies to very small mass transfer rates, but the moment b become 

very large, you must account for property variations. 
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Now, in order to avoid this solution of the complete set of boundary layer equations, here 

is an advice. A laminar boundary layers one could easily take, write g over g star equal to 

l n 1 plus B w by B psi multiplied by molecular weight of the mixture in the w state 

divided by molecular weight of the mixture in the infinity state raise to 0.66. 

This is from this this correction is derived from numerical solution of the differential 

complete differential equations for large b and allowing for molecular property 



variations. So, there is no need now again to solve the differential equations; we can 

simply take this as a correction for laminar boundary layer. Likewise, in the turbulent 

boundary layer, the recommended property correction is same thing M w over n divided 

by M infinity raise to 0.4 
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Now, these relations these sorts of corrections that we have indicated also apply to 

internal flows, the only difference is instead of psi infinity divided by psi w, so in 

internal flows instead of psi infinity, we simply take B equal to psi of the bulk value 

minus psi wall divided by psi wall minus psi t. So that is the only difference, quite 

analogs to what we do in heat transfer, where we define heat transfer based on the bulk 

value and wall value in internal flows, whereas we define it based on infinity and wall 

value in external boundary layers. 
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So, with that change you simply interpret B psi equal to psi b minus psi wall divided by 

psi wall minus psi t, and psi B is the bulk value calculated as usual from integration of 

the actual velocity profile and psi profile. 
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Now, in order to help computations what I have done here is, to give you the values of 

binary diffusion coefficient D a b so that you can evaluate Schmidt numbers and other 

quantities for any problem that we shall be encountering in the subsequent lectures. 



So, for example, D a b is the diffusion coefficient; it is always defined for a pair of gases 

a and b. So, here I am defining it for example, water vapor and air 24 into 10 raise to 

minus 6; CO in air 19 into 10 raise to minus 6 and so on and so forth. 

So, this is for your ready reference which you can use; the only thing to remember 

though is that, these values are at temperature of 300 K and 1 atmosphere, but many 

times we have higher pressure particularly in combustion problems and temperature 

would also be higher in which case you simply make a correction. 
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So, D a b at any temperature and pressure divided by D a b at 298 and 1 atmosphere is 

simply T raise to T divided by 298 raise to 1.5 or 3/2rather divided by 1 over p, so that is 

how one calculates. So, the higher the pressure, lower is the value of D a b, but D a b is 

proportional to t to the half so and temperature is to be evaluated in kelvin that is to be 

remember. So, this is just for your ready reference. 
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So, then for overall procedure now for calculating N w will be for all types of mass 

transfer problems that we encountered. Identify first the appropriate conserved property 

psi and we have shown how to do this in inert mass transfer, inert mass transfer with heat 

transfer, mass transfer with simple chemical reaction and mass transfer with arbitrary 

chemical reaction. 

So, we know to how to evaluate psi. Make sure that B psi can be evaluated from psi 

infinity psi, psi t and psi w. Now, usually psi infinity and psi t are known, but psi w is 

usually not known and therefore, it has to be determined. There are various ways to 

avoid knowing psi w, for example, psi w can be rendered 0, simply by taking t ref as t w. 

But many a times that is not possible, and then, we must select such combinations of psi 

that the composite variable would not require value of psi w; we will we will shown in 

practical problem of this nature a little later. 



But many a times psi w needs be established from iterations and I have given you 

already one example of this type, but we will see many more as we go into the next 

lectures. Then for the mass transfer problem at hand, identify the corresponding heat 

transfer situation with V w equal to 0 for which the correlation is available and hence 

evaluate the value of h cof V w equal to 0. 

So, as to evaluate g star h is equal to h cof V w equal to 0 divided by C p m the specific 

heat of the mixture and hence, then evaluate N w equal to g B which is equal to g star h 

Prandtl divided by Schmidt raise to n which will come from the correlation itself. 

Because Prandtl raise to n and Schmidt raise to n are identical, because Nusselt x equal 

to Sherwood x at constant properties, and then, allow for variable property correction M 

w by M infinity raise to some power x into l n 1 plus B psi. 

So, n and x are to be carefully chosen from the correlation itself and x value only take in 

laminar flow 0.66; in turbulent flow, 0.4. So, this can be easily… So, that is the overall 

procedure, then for calculating N w using Reynolds flow model, it will require no 

solution of any differential equation, only thing is the psi must be carefully chosen so 

that B can be cal[culated]- B psi can be calculated, and then, appropriate co relation must 

be chosen with appropriate values of n and x again depending on whether its laminar or 

turbulent boundary layer. 
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So, then in summary I would say that we have thus examine the validity of N w equal to 

g B psi equal to g star l n 1 plus B psi, and g over g star is in fact equal to F B is equal to 

l n 1 plus B psi by B psi. But this applies only to very very small mass transfer rates b 

psi, when b psi is very very small, this relationship we have verified even from by 

looking at laminar flow data, boundary layer data that we had computed earlier and also 

the turbulent flow data. So, this is valid only for very very small mass transfer rates and 

constant properties. 

It is shown that the deviations from this formula occur when the fluid properties vary 

significantly in the boundary layer at large B psi and hence, the calculation of N w is 

corrected as what I have showed on the previous slide, where g star h is equal to V w 0 

divided by C p m. 

So, with this, we are now ready to demonstrate applications of Stefan, Couette and 

Reynolds flow models to problems of engineering relevance. And we shall actually 

calculate numerical problems in which first we will consider the Stefan flow model; for 

diffusion problems, we will consider Couetee flow model to show that this kind of 

property variation correction based on molecular weights of the infinity and w stage is in 

fact required, and then, we shall move to Reynolds flow model and solve several 

problems about at least eight to ten problems so that we can you can appreciate how to 

apply these methods for calculating practical convective mass transfer problems.  


