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In the last three lectures, we looked at the proxies of the boundary layer flow model 

namely, the Stephen flow model, the Kuwait flow model and the Reynolds flow model, 

the last one being the algebraic model. Whereas, the Stephen and Kuwait flow models 

were one dimensional models. 

Now, we look at the complete two dimensional boundary layer flow model. So as to 

recover some ideas, as to why we expect the simpler models to mimic the boundary layer 

flow model. 

(Refer Slide Time: 01:13) 

 

In this lecture, I will introduce some definitions and then of course, look at the governing 

equations. Of course, we will convert them to conserved probably forms for all types of 

mass transfer problems. Then the main important thing is we will recover the boundary 



conditions from mass conservation principle and the energy conservation principle. 

Ultimately, we will show that N w is equal to g B for small and large mass transfer rates. 

(Refer Slide Time: 01:35) 

 

The definition of the boundary layer flow model is as follows, there is a surface and this 

is the considered phase and this is the neighboring phase as you know, this is the 

interface (Refer Slide Time: 01:43). In the considered phase, you have there may be 

presence of chemical reactions, there may be presence of turbulence, concentration 

gradients, temperature gradients and so on so forth. Infinity state is one, where all the 

gradients vanish. 

The total mass transfer that is both convective plus diffusive mass transfer takes place at 

the interface from the neighboring phase. In deep inside the neighboring phase we 

defined a T-state, which of course, where the concentration gradients and temperature 

gradients as again like infinity state. Here again, in the T-state they are 0 or we say that 

the fluid properties are uniform. 

Convective mass transfer takes place due to concentration gradients in the considered 

phase. Since, the Reynolds flow model mimics the real flow, the interface mass flux is 

given as N w equal to g B and N w and g have the same units. 



N w is required as a boundary condition, because mass transfer equation as well as the 

energy equation and as well as the momentum equation because N w brings with it a 

certain velocity at which the mass comes in. 

(Refer Slide Time: 03:14) 

 

Assuming steady state mass transfer, now you have d by dx of rho m u psi plus d by dy 

of rho m v psi plus d by dy of gamma psi d psi by dy plus a source term, where psi is any 

property like when it is 1 we will get bulk mass equation, because that term is 0 and S w 

is specified as 0 and that being 1 you simply get d rho m u by dx plus d rho m v by dy 

equal to 0. There is bulk mass equation under steady state. 

If I say psi is equal to u then gamma psi would be mu m effective assuming that is 

turbulent flow. S psi would be usually minus dp by dx, which is the pressure gradient. If 

psi is equal to omega k then gamma psi as you now, would be rho m D effective plus 

equal to and source would be R k, which is the species transfer equation. Then there 

would be the element transfer equation with the source is always 0, because element 

alpha is a conserved property. The h m is the mixture enthalpy that would be has a 

source term compressing mass transfer due to diffusion flux m double dash y k. 

The source, there can be other sources like Dp Dt Q rad then many other sources, these 

are all ignored, we also ignored the viscous dissipation here. All equations are coupled 

requiring numerical solutions. Simplifications of omega k and h m equations are possible 

under certain assumptions, so that they are rendered to a conserved property equation. 



We have gone over all these processes of converting omega k and h m equations to 

conserved property forms in variety of mass transfer problems. 

(Refer Slide Time: 05:18) 

 

If I write in conserved property form the equation is simply this with S pi equal to 0 N w 

equal to g B; B is equal to psi infinity minus psi w psi w minus psi t (Refer Slide Time: 

05:23). 

Now, in inert mass transfer without heat transfer as you will recall, psi is simply omega 

of the vapor and gamma is rho m D the defensibility. In inert mass transfer with heat 

transfer psi equal to omega v as and h m and it is energy equation. We make use of the 

assumption of Lewis number equal to 1 that is gamma m h equal to rho m D equal to rho 

m alpha m. In mass transfer with simple chemical reaction means, we choose psi 

appropriately as a combination of fuel and oxygen, or fuel and product and so on, so 

forth and h m. 

Again, make the Lewis number equal to 1 assumption and also say that the specific heats 

are equal that is what renders the energy equation in the conserved property form. In 

mass transfer with arbitrary chemical reaction for psi is again form from appropriate 

combinations of eta, alpha and gamma m is rho m D. In each case we need boundary 

conditions at y equal to 0, which will come from that form of the Reynolds flow model. 
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For the inert mass transfer, consider mass conservation between T and w-states. As we 

recall, this is our w w-state, this is T-state and this is the infinity state. We specify N w 

here, N w here, and then you will see that the mass which is coming in here is N w 

omega k at T. What is going out is N w times omega k at w minus the diffusion mass 

transfer, which is rho m diffusivity omega k by dy at y equal to 0 (Refer Slide Time: 

07:03). This would be the mass balance, because this multiplied by omega k will be the 

convective transfer and diffusion transfer will be m dot k at w, which is nothing but, 

from fix law this is rho m diffusivity into omega k dy at y equal to 0. 
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If I rearrange this equation take N w common out here, then I get the form N w is equal 

to rho m D omega k dy at wall divided by omega k w minus omega k at T. Likewise, for 

any other conserved property phi I have the same equation, as you can see here (Refer 

Slide Time: 08:37). N w will be rho m D omega phi d phi by dy at w phi w minus phi T, 

where phi would be as you will recall, omega f u minus omega o 2 divide by r st equal to 

omega fu plus omega product by 1 plus r st for a simple chemical reaction and the phi 

can be any linear combination of eta alpha. You choose alpha, it is suitable for a given 

problem as we indicated last time. 

(Refer Slide Time: 09:19) 
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These are the boundary conditions derived from mass conservation principle (Refer Slide 

Time: 09:35). Likewise, we can do for the energy equation. For example, in a energy 

equation again, if I consider this to be w w and this to be T T-state, then N w times h mT 

will be the flux coming in. As well as, q w will be another flux coming in whereas, what 

is going out is the convective flux N w h w plus m dot w diffusion of the wk h k sigma. 

(Refer Slide Time: 10:10) 

 

If I equate the in fluxes with outgoing fluxes I would get the form, which I have showed 

here (Refer Slide Time: 10:10). This is the incoming flux, q w is also the incoming flux, 



which should be on this side. N w is equal to h m w and this is the diffusion flux of 

species k multiplied by the enthalpy, let goes with it of the species k. 

Now, q w is equal to k m dT dy, because q w is shown inwards and that would be equal 

to c pm gamma h, where gamma h is rho m alpha m dT by dy at the w. Hence, Nw 

would written as sigma k; a gamma m d omega k by dy at w h k plus c pm gamma h dt 

by dy at w h m w minus h m t. This is the general energy conservation principle. The 

final form of the numerator will depend on the mass transfer application. Let us see, what 

are the different forms? That this numerator will take in different types of mash transfer 

problems. 
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In inert mass transfer with heat transfer and if I make the assumption of Lewis number 1 

as we usually do, then gamma h will be simply equal to gamma m. Hence, c pm d 

gamma h dt by dy would be gamma h into c pm is simply sigma omega k c p k into dt by 

dy. 

If I now, absorb c p k inside this derivative then I get a gamma h into sigma omega k dh 

k by dy at w. Hence, you will see that the numerator now reads as gamma m into sigma k 

d omega k by dy, where w h k plus gamma h into sigma k of omega k dh k by dy at w. 



Since, we have assumed gamma h is equal to gamma m, these two terms are simply 

differentials of the product omega k hk dy at w summation of omega k hk is simply 

gamma mh dh m by dy, where w h m w minus h m T. 
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So, N w takes the same form as derived from the mass conservation principle but, with 

the variable enthalpy h m. Let us see, the numerator when mass transfer with heat 

transfer and simple chemical reaction. Here, we take Lewis number equal to 1 and also 

say that c p k will be equal to c pm. For the moment let us say, delta T stands for T 

minus T ref, then we have enthalpy of the fuel would be c p m into delta T plus omega f 

u into delta h c that is I have associated the heat of combustion with fuel. Therefore, h o 

2 and h product will be simply c pm delta T. 

Hence, summation of sigma gamma m d omega k by dy h k would simply amount to 

gamma m d fu by dy at the wall multiplied by dh c, because the other quantity c pm delta 

T if I substitute c pm delta T for all the three spaces, it would simply give me c pm delta 

T gamma h into summation of d omega k by dy at w equal to 0, because summation of 

sigma omega k is 1. Likewise, c pm gamma h dT by dy would be gamma h dh m by dy at 

w from this relationship minus gamma h d hc by d fu by dy. 
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Again, you see that the addition of this term with the summation of these two terms, this 

one, this term and this term, would amount to this term we will cancel with this term, 

because gamma m is equal to gamma h (Refer Slide Time: 14:35). Therefore, we get N 

w again is equal to gamma mh dh m by dy at w divided by h m w minus h m T.  

Even in simple chemical reaction with these assumptions of Lewis number equal to 1 

and equal specific heats, we recover the same form as we had done earlier with inert 

mass transfer with heat transfer. 
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Finally, let us look at single component convective mass transfer. Now, in this case, 

omega k is equal to 1 therefore, this part of the numerator will be 0 and c pm gamma h dt 

by dy would be simply gamma h, because I can multiply c pm inside this and therefore, 

that will give me h m by dy at w. Hence, I get N w equal to d h m by dy w h m w minus 

h m T, which is again, what we had earlier. 

Single component convective heat transfer means supposing I have a boundary layer 

with air, I am injecting in air itself from the wall at a given rate, so the energy equation 

would take the form that I have shown here. Now, if I further make the assumption that 

this specific heats do not vary between w T and infinity states. Then of course, I can 

show that N w will be equal to gamma h into dT by dy w divided by T w minus T T. 
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Thus, in all cases of mass transfer mass and energy conservation principles give identical 

formula for N w. Combining with Reynolds flow model, which claims to mimic the real 

boundary layer flow model. We can say that N w will be equal to gamma psi d psi by dy 

w over psi w minus psi T, which we are just now derived is equal to g times B and that 

must equal rho m V w. You can see now that the momentum equations, which require 

these quantities, are coupled with the mass fraction and energy equations through these 

quantities. 

What it shows is that the rate of mass transfer would be proportional to psi infinity minus 

psi w. It will also be proportional to the gradient of psi at the wall and it will be 

proportional to V w, which is from that one. This shows that even if gamma is uniform 

the psi equation is non-linear that gamma is the property, so even if it was uniform 

through the considered phase the psi equation is non-linear, because velocity field u v is 

a function of V w and psi infinity minus psi w. 

Now, this kind of coupling through the boundary conditions of momentum and the mass 

trans scalar equations is akin to the natural convection problem in which u and v are 

coupled to the energy equation through the source terms, we call the buoyancy term. 
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In natural convection momentum and energy equations are coupled through buoyancy 

resource terms whereas, in mass transfer the coupling arises because of the boundary 

condition at the wall. This is the difference between a natural convection problem and a 

force convection mass transfer problem. 
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A coupling between the momentum and psi equations can be ignored, when N w which 

is proportional to V w tends to 0, which means if the mass transfer rate is very small then 

we can say that g star, which is the value of g for small mass transfer rights. Then N w 

divided by B psi N w tends to 0 would be minus gamma psi d omega by dy divided by 

psi w minus psi infinity. 

(Refer Slide Time: 18:50) 
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This follows from the previous equation which I have shown here, so I simply cancel psi 

w psi T psi w minus psi T. This is psi infinity minus psi w is taken to the denominator, so 

you get g star is equal to this quantity (Refer Slide Time: 19:05). The g star now depends 

only on the psi profiles and not on the boundary condition, because V w is tending to 0. 

This definition is analogous to that use to define the heat transfer coefficient as you will 

recall, we define the heat transfer coefficient as minus k dT dy T w minus T infinity. 

Likewise, we say that the g star which is the mass transfer coefficient at V w equal to 0 is 

gamma minus gamma psi d psi by dy at w divided by psi w minus psi infinity, so the two 

definitions are now analogous. Now, you can see why we have been calling g as the 

mass transfer coefficient. 

When N w is large the coupling between the momentum equations and the psi equation 

is strong and N w equal to g times B psi. Hence, g must be a function of B psi and g star 

equal to g when B psi tends to 0; g star is simply g with B psi sending to 0, but it would 

also g will also be itself be a function of g. Perhaps even of Reynolds number Prandtl 

number and so on so forth, but we shall shortly see, what are the states of affairs? 
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By analyzing experimental data on mass transfer with and without combustions, 

Spalding showed that within experimental scatter g by g star is equal to N w by B 

divided by N w by B at very small mass transfer rates, is in fact equal to F B only, this is 

what noting F B only. 

In other words, the equation shows that g over g star is not influenced by Reynolds 

number, Prandtl number or Schmidt numbers. This is what the experimental data shows. 

In internal flows as well as external flows; flow over cylinder, flow over flat plates and 

flow through the tubes and so on so forth. It may be a problem of evaporation, it may be 

a problem of condensation and it may be a problem of combustion, all these problems for 

which experimental data were available. 

Spalding showed that g over g star turns within experimental scatter say about plus 

minus 10 to 15 percent g by g star is a function of B only, which is a remarkable result 

that this ratio should not be influenced by any other quantity other than the driving force 

B. So, it is independent of Reynolds Prandtl and Schmidt numbers. 

All that we would require now is the value of g star, evaluate it from h c of V w equal to 

0 divided by c pm and F B to obtain g. What are the forms of F B? That is what we want 

to find out. Suddenly, this book Spalding D B Convective Mass Transfer published in 

1963 is a pioneering book on mass transfer and particularly of great relevance to 

engineering community. 
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Now, let us see, what the form of F B should be. Using computer simulations of the 

boundary layer equation as well as, experimental data, Spalding showed that g over g 

star is equal to F B and that function F B is nothing but, ln 1 plus B by B. 

Now, if you recall, this is the relationship, which we had also predicted using Stefan flow 

model as well as the Couette flow models. Of course, Stefan flow model was for 

diffusion mass transfer only whereas, the Couette flow model was for included 

convection in its flow. Therefore, this relationship is unique it does not contain any 

Reynolds number, Prandtl number or anything like that. 

We take up the issues as together this relationship can actually be predicted can also be 

derived from the Reynolds flow model. Just as we had shown it mathematically that the 

Stefan and Couette flow models yield that relationship. 

In order to do that let us reconsider about T-state, w-state and the infinity state with the 

considered phase shown here, between w and infinity state (Refer Slide Time: 24:05). 

Here, what I have done is let us consider an elemental strip here of thickness delta y the 

outer edge of that strip is y o the inner edge of the strip is y i. Let us postulate g star star 

as a flux at the y o surface, which is coming in and bringing with it the properties of the y 

o surface. Likewise, N w plus g star star is an outgoing flux, which brings the properties 

of the y i state. 



So, this is what I have said here g star star crosses the y o surface carrying properties of 

the y o surface. Similarly, the Reynolds flux n g star star plus N w crosses y o surface 

carrying with it properties of the y i surface. 
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The physical idea behind introduction of g star star is that the real flow processes like 

heat conduction mass diffusion turbulence etcetera, do behave like the Reynolds flow but 

on a much smaller scale delta y y o minus y i tending to 0. 

If I now write the mass conservation over y o and T-states, then N w psi T would be the 

incoming flux plus g star star into psi times y o would be the incoming flux from y o 

surface and that would equal g star star plus N w into psi y i. Therefore, rearrangement of 

this would give me N w divided by g star star is equal to psi y o minus psi y i divided by 

psi y i minus psi T or this difference is nothing but, d psi y and this is psi y minus psi T 

(Refer Slide Time: 26:04). 

If we consider large numbers of delta y between 0 and delta of the considered phase 

called between infinity and w-states, then simply N w into summation of 1 over g star 

star would amount to integration of 0 to infinity d psi y divided by psi y minus psi T. The 

integration would naturally yield ln 1 plus psi y infinity minus psi w divided by psi w 

minus psi T, which as you know is nothing but, B psi ln 1 plus B psi. 
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If I take this result further then as B psi tends to 0 N w w into infinity 1 over g star star 

would simply tend to B psi itself. So, as B psi tends to 0 w to infinity is g star star raise 

to minus 1 would stand to B psi by N w. 

(Refer Slide Time: 27:18) 

 

Therefore, comparison of with the observation of slide 11, what is the observation we 

made on slide 11? The g over g star is equal to N w divided by B over N w by B N w 0 is 

equal to F B. 
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Comparison with that will show that as that as B psi tends to 0, the sum of g star star 

raise to minus 1 is nothing but, the g star raise to minus 1. Hence, N w equal to g B psi is 

equal to g star ln 1 plus B psi and g over g star is equal to F B and that is equal to ln 1 

plus B psi over B psi. This is a very interesting result (Refer Slide Time: 27:56). 

Remember, g is conductance and therefore, 1 over g is resistance. 
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The total resistance between w and infinity states, which we say is 1 over g star is 

nothing but, sigma 1 over g star star, where g star star is the resistance of the small 



element g bar delta y over delta y. We can interpret now that the 1 over g star the 

resistance is the sum of the resistances to mass transfer between w and infinity states. 

The inverse of that is the conductance of mass transfer. 
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In other words, the ratio of the conductance at large mass transfer rates divided by 

conductance at small mass transfer rates or negligible mass transfer rates is simply a 

function of ln 1 plus B psi by B psi. This formula can be used for large mass transfer 

rates obtained in liquid-fuel burning and in transpiration cooling as we shall see in later 

lectures, where I will be considering problems. A small B psi usually occurs in 

combustion of solid fuels and in evaporative cooling or air conditioning and so on so 

forth. 

But, in these applications, B psi would be a less than 0.1 in these applications 

combustion of solid fuel, evaporative cooling and air in fact it will be of the order of 0.02 

0.03, whereas in transpiration cooling and liquid fuel burning value of B psi can vary 

between 0.5 to nearly 10. So, B psi can be really large in liquid fuel burning and in 

transpiration cooling. 

We shall check how good is this formula from the analytical solution we have derived so 

far for laminar flows as well as, in turbulent flows. Let us see, how well this formula is, 

so that we can confidently use it at different mass transfer rate. 



If the mass transfer rate is very low then of course, there is no problem because g by g 

star will be simply 1 and you would have straight away, there is a no difficultly. If g by g 

star is moderate then of course, this formula will work. 
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At very large mass transfer rate remember the definition of B psi says that B psi is psi 

infinity minus psi w divided by psi w minus psi T. When B psi is very large psi infinity 

minus psi w is also large and this means that when the property in the infinity state and 

the w-state is large we would expect the property is to vary between the w and infinity 

state. 
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Any departure from this formula is found in experiments would be largely due to 

property variations. Therefore, this formula is usually corrected for property variation 

and that is the matter for discussion in the next lecture. 


