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So, now we will look at the Reynolds flow model, which is an algebraic model as we 

said earlier, unlike the Stefan flow model which is a differential equation model but one-

dimensional differential equation model, and the coquette flow model, which again was a 

one-dimensional model. 
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Our interest now is to develop the features of the Reynolds flow model and what I will 

do is, first of all, define Reynolds flow model, again go over the Reynolds flux 

hypothesis. Reynolds flow model is supposed to mimic the boundary layer flow model. 

We will also consider momentum transfer with suction and blowing, we will also 

consider single phase convective heat transfer with suction and blowing, and then, the 

four types of mass transfer problems in which the species mass transfer equation as well 

as the energy equation will be invoked. 
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I am now going to define the Reynolds flow model, as you recall this is the interface, this 

is the considered phase to which the mass transfer n w is taking place. This is the transfer 

substance phase from where the mass transfer is taking place to the considered phase. 

And this is the infinity state which is far away from the interface in the considered phase. 

So, the principle idea of the Reynolds flow model revolves around postulation of a 

fictitious flux. It is a notional flux kilograms per meter square second. So, it is a notional 

mass flux. 

Defined in the infinity state and its direction is towards the interface, and in doing so, as 

it flows from the infinity state towards the interface or the w state it carries with it the 

properties of the infinity state. So, that is the first postulate of the model. And the model 

develops algebraic relations that are related to the real transport phenomena by reference 

to this flux g. And further the model will result into n w equal to g times b. So, instead of 

the logarithmic relations we saw earlier, the model will develop n w equal to g times has 

the appropriate relationship. Now, the objective of course, in order to solve the problem, 

we first need to define b of course, which we have done in the previous two lectures for a 

variety of mass transfer problems. And the second thing is to evaluate g, but the way we 

will do it is our route will be that g will be related to the value of the heat transfer 

coefficient in the absence of mass transfer. So, we are going to relate g. 
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We are going to relate g to heat transfer coefficient for v w equal to 0 and the reason we 

do this is because, these values are available for wide variety of situations through 

correlations. So, given a mass transfer situation, let us say, flow over a cylinder like this, 

then I would know what the nusselt number is as a function of Reynolds number and 

prandtl number nusselt number based on diameter d. 

I would know what it will be as a function of Reynolds number and prandtl number and 

for which I can divide h cof w equal to 0. If I can relate this value to g which is in 

kilograms per meter square second, whereas, h is in watts per meter square or essentially 

joules per meter square second. So, obviously, we expect relationship between g will be 

proportional to h cof w equal to 0 divided by specific heat. 

Now, this will have the same units because h cof is joules per meter square second and c 

p is joules per kg per kelvin divided by meter square kelvin k divided by k divided by k. 

So, k k gets cancelled, Joules and joules get cancelled and again you will get kg per 

meter square second. So, this is what we are aiming at. What therefore, this will do is the 

following. That given a mass transfer situation of any kind, this can be a mass transfer 

flow cylinder or it can be flow through a tube or anything like that, we calculate the 

appropriate value of b and evaluate g from the knowledge of the heat transfer coefficient 

in the absence of mass transfer in that same situation. So, basically no differential 

equations are solved the entire model is algebraic. 
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Now, in order to facilitate further discussion, I am going to define in the w state, two 

more surfaces, which are almost coincident with the w state interface. One of them is the 

t w state, which is just inside the considered phase and t l state which will be just inside 

the transferred substance phase. So, this is what t w and t l are. The t in the t state as you 

remember there are no temperature or composition gradients and they call they are 

uniform. 

In addition, we shall also postulate that there will be conduction heat transfer from the 

considered phase to the w state and there can also be possibly some temperature 

variation from deep inside the transferred substance phase to the interface in which case 

there would be some conduction heat transfer even in the transferred substance phase 

which I have called q l. This is q w. In the considered phase, there can also be radiation 

heat transfer to the wall in the considered phase. 

And in this model for convenience we will account for it as though the knit the radiation 

flux actually penetrates the interface and appears in the transferred substance phase. The 

reason for doing this would be very obvious as we go along. So, there are few new 

definitions introduced t w state, t l state, heat flux q w and heat flux q l in the considered 

n transferred substance phases respectively and the q radiation which is accounted in the 

transferred substance phase. 
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The mass transfer flux is the sum of all species transferred across the interface. So, n w 

can be sum of n j w. Let us say, in the transferred substance phase and n k w in the 

considered phase. The species j in the transferred substance phase need not be the same 

as species j species k in the considered phase. 
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This is typically the case when, let us say, I have mass transfer taking place across a 

wood particle. Then here, there will be the wood itself has a formula of c x h y s, I mean 

m ho p s q and so on, so forth. And when the wood burns for example, you will get all 



sorts of gases like c o two c o or h two depends on the temperature of the surface. So, the 

species involved inside the wood surface need not be the same. 
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As involved in the considered phase, but the sum of those fluxes of these spaces and the 

sum of the flux of the of the of these species should be the same. We say, q w is positive 

when flowing towards the interface from the considered phase. 
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And q l is positive when flowing away from the interface in the neighboring phase. So in 

other words in this figure both q w and q l are shown in the positive direction if I now 

draw an interface say w w. 
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And let us say this is t w and this is t l there is q w here and q sorry q l in this direction 

then, the mass transfer flux is passing like this n w. So, if I take the control volume like 

this, then n w into h t l which is coming in. Plus q w which is also coming in must equal 

what is going out, which is q l plus n w into h t w. So, n w t n wt h t l comes in and what 

is going out is n w h t w that is what we mean. 
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And therefore, you will see that q w minus q l would be equal to n w into h t w minus h t 

l. Therefore, q w minus q l will be n w times h t w minus h t l where h t w and h t l are 

enthalpies of the transferred substance, at the t w and t l state. This is very very 

important, h t w simply implies the enthalpy of the transferred substance, if it was to 

appear in the considered phase as h t w. h t l on the other hand is the enthalpy of the 

transferred substance in the neighboring phase, but at the temperature of the interface. 

So, that it is what we mean by enthalpy here. So, suffix t w and t l are different from 

suffix w itself, suffix w refers to the mixture enthalpy, whereas suffix t w refers to the 

transferred substance enthalpy both in the w and l states, that is just inside the considered 

phase and inside the transferred substance phase difference. Now, if q w minus q l is not 

equal to 0 then a phase change occur. For example, if h t w minus h t l was equal to the, 

remember h t w is the vapor phase, for example, in an evaporation problem and h t l will 

be the liquid enthalpy, then h t w minus h t l would be simply h f g, the latent heat of 

evaporation and therefore, q w minus q l will not be equal to 0. And that is where when 

the phase change occurs. So, that is the idea of why we define h t w and h t l as the 

enthalpies of the transferred substance in the vapor in the considered phase and in the 

transferred substance phases. 
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Q rad from the considered phase to the interface is positive, it is accounted in the 

neighboring phase. So, with this definitions, we now turn to the main hypothesis of the 

model. Now in different applications with or without chemical reaction, complex 

processes occur in the considered phase. That is where you will have effects of property 

variations, effect of turbulence and variety of other, there may be chemical reaction, 

there may not be any chemical reaction, so on and so forth. 

This sort of situation would require solution of the complete set up boundary layer 

equations and what the algebraic model or the Reynolds flow model tries to do is to say, 

that the that to avoid solution of any differential equations, it is assumed that the 

complex processes can be effectively simulated by a fictitious flux g through the infinity 

infinity state towards the interface carrying with it properties of the infinity state. In other 

words, g flux carries with it the properties of the infinity state towards the interface. 



(Refer Slide Time: 14:13) 

 

On the other hand, n w plus g flux carries with it is again postulated at the infinity state, 

but it carries with it values of the w state, the upstream values if you like, likewise 

upstream values here in this direction. This is very important distinction between the two 

fluxes defined that g flux carries with it the properties of the infinite state as it moves 

towards the interface whereas, n w plus g moves away from the interface and carries 

with it the values of the w phase, w state. 
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(Refer Slide Time: 15:17) 

 

So, that is what I have said a fictitious flux n w plus g through infinity infinity plane 

away from the interface carrying with it properties of the w state. Now what this ensures 

is that in the considered phase, there will be no net generation of mass at all because g is 

coming in and g is going out. 
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So, there is no net generation of mass and that is what is expected even in a real 

boundary layer flow, there should be no net generation of mass. The magnitude of g is 



not affected by the presence of gradients of omega j, T or turbulence, radiation etcetera 

in the considered phase. So, that is the another characteristics of the g g flux. 
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It is also not affected by the direction of n w, in other words, I may have a problem of 

evaporation in which n w is this way, I may have a problem in which condensation 

occurs in which the n w is negative. So, g is not influenced by presence of, by the 

direction or magnitude of n w and secondly, it is a not affected by gradients of omega j, 

temperature or turbulence quantities in the considered phase and yet in spite of these 

assumptions made the g flux is suppose to produce the same effect at the interface that 

the real boundary layer flow is likely to produce. 
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This is the claim of the model, this is the claim of the hypothesis that it can, in fact, 

represent all effects of a real boundary layer flow, although the method is very very 

simple and algebraic. To illustrate this, let me consider the case of evaporative cooling. 

So, for example, let me say, that I have a very hot surface here at temperature t s and it is 

hot because very hot gases are flowing over it in the infinity state, very hot gases are 

flowing and they are dried well before humidity. 



Obviously, to protect this surface from the hot gases and to keep its temperature down 

what one is interest, what one might do is to provide let us say, a water film here, pass a 

thin film of water then what it will do is that the water film will evaporate. The water 

film will evaporate and in the process we will receive heat both from the solid surface as 

well as from the hot gases. So, this is the likely temperature profile. Remember in the 

absence of the film probably the temperature would have been much higher than what is 

shown here. 

So, in order to cool down, but the liq[uid]- at the liquid film the temperature will drop 

considerably and that would result into actually sum transfer of heat from through the 

liquid film from the wall to the film to the edge of the film and likewise there will be 

heat transfer. So, q w in this case would be positive, but q l which is which would be 

now in the from the transferred substance phase to the interface would be negative, q l 

would be negative and n w would be positive. 

So, what we expect therefore, the Reynolds flux hypothesis states, that a g flux of hot 

gases towards the interface together with the n w plus g fluxes of cooler moist air away 

from the interface, away from the interface hot gases towards interface will produce the 

effect that n w is greater than 0, q w is also greater than 0 because it flows into the 

surface and q l will be negative because it is also flowing into the surface from the 

neighboring phase. Now, this is what we expect the real flow to do. 

And the Reynolds flux model claims that it will do precisely that, that it will do precisely 

that. So, in this sense the g flux is considered capable of responding to the mass-fraction 

and temperature gradients as well as turbulence effects in the considered phase as shown 

in this figure on this side. So, it disregards what the temperature gradients here are, what 

the temperature gradients here are and so on, so forth, or the mass fraction gradients here 

are, we can remember mass fraction gradient would fall, it disregards any turbulence 

effects in the considered phase and will produce exactly the same effect, n w greater than 

0, q w greater than 0 and q l less than 0. That is the claim of the model. Let us see how 

we can justify that.  
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Because it can handle both momentum and heat transfer we are going to consider the 

control volume between infinities and w states. So, basically what I am going do now is 

to consider the w state and infinity state and I am going to consider momentum transfer, 

then the g flux will bring with it g times u infinity. So, momentum in will be g times u 

infinity, momentum out will be n w plus g u u w n w plus g u at w plus shear stress, tau 

w, that is also momentum out of the of the cell. But at the surface u w will be 0 therefore, 



that goes out. So, basically if I quit the two, I get g u infinity equal to tau w that is what 

the Reynolds flow model implies. So, let us see what does this mean. 
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Well. So, basically as you will see here, I have said n w plus g u w equal to 0 and 

therefore, g u infinity divided by tau wall would equal 1 and n w divided by rho times v 

w yes. So, what I have done here is, 1 is equal to n w itself is a rho v w. So, I am 

replacing 1 by n w by v w or n w can be written as g times rho v w u infinity by tau wall 

and that would be equal to g into vv w divided by u infinity tau wall over rho u infinity 

square. Essentially I have divided and multiplied by u infinity and what is this quantity 

this is essentially v w by u infinity divided by c of x by 2 and therefore, n w is simply g 

times b f, our claim that the model is able to predict all effects of momentum transfer 

through this expression n w equal to g b is verified as long as we interpret b in this 

fashion, vf equal to v w u infinity divided by c f x two. So, in order to get g, what will be 

g, the meaning of g will be tau wall over rho u infinity which will be rho u infinity c f x 

by two. So, in the momentum transfer problem, g would be simply rho u infinity c f x by 

two and c f x by two is available to us from correlations for many many problems. 



(Refer Slide Time: 23:27) 

 

(Refer Slide Time: 23:40) 

 

Let us look at single phase convective heat transfer in which they consider the c v 

between t and infinity state. Now what I am going to do is to consider the, this is the w 

state, this is the t state and this is the infinity infinity state, then you will see that heat in 

will be g times h infinity, there will be n plus w n w n w plus g hw and there would be 

here n w times h t. 

This is the. So, I am considering the control volume between infinity infinity and t t 

states. So, there is a it will bring with it g u h infinity at the enthalp[y]-total [en/energy] 



energy flux, it there would be n w into h t will be the total [en/energy] energy flux 

coming in here also and here and what will be going out is n w plus g h w, and that is 

going out. So, if I equate what is coming in and what is going out then you will see that I 

get this relationship, rate of heat flux in is equal to g h infinity plus n w h t plus n w plus 

g divided by, multiplied by h w. 
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So, if I equate and rearrange and then again you will see, I get n w equal to g times b h 

where b h is equal to h infinity minus h w divided by h w minus h t or h infinity in this 

case, because it is a single phase mass transfer, single phase convective heat transfer with 

suction and blowing may be, this will be simply c p into t in the infinity state minus c p 

into t into w state divided by c p t w state minus c p t in the transferred substance phase 

and therefore, n w will be equal to n w v w, if the specific heats are equal of course, b h 

would be simply t infinity minus t w divided by t w minus t t. If I now consider infinity 

infinity state n w states, say if I now consider those states, then you will see here you will 

get n w h w. 
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So, my equations would now read as g h infinity coming in, n w h w coming in and n w 

plus g h w going out. So, that is what I have written, plus there would be q w also which 

will go out between in this control volume, for this control volume. 
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So, you will see that I get rate of heat flux in as g h infinity plus n w h w, rate of heat 

flux out will be n w g h w plus q w and if I equate and rearrange then I will get g is equal 

to h times, the g q w divided by h infinity minus h w. And if specific heats are equal in 

the infinity and w states, then g would be simply q wall divided by c p t infinity minus t 

w and as you know, this would be simply minus h cof v w by c p. 

(Refer Slide Time: 27:29) 

 

So, therefore, g is indeed related to heat transfer coefficient in the presence of suction 

and blowing. So, that is what the single phase convective heat transfer shows, convective 



momentum transfer shows that g is equal to rho u infinity c f x by 2 and here h cof is 

equal to. 
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Now you can see very well that if I define, if I, since g is equal to minus h cof v w 

divided by c p, if I divide and multiply this by rho u infinity rho u infinity, then you will 

see this will be stanton x into rho u infinity. So, rho u infinity stanton x for v w, 

analogous to rho u infinity c f x by 2, that was from momentum transfer and this is for 

heat transfer, very similar formulas which essentially implies that the analogy between 



heat transfer and momentum transfer through the coefficient g, the convective mass 

transfer coefficient. 
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So, inert mass transfer without heat transfer, so, now we consider, now let us say, in all 

states the temperatures are equal. So, there is no heat transfer at all, but there would be 

mass transfer. So, again if I consider t control volume between t v t state and infinity 

state, then there will be rate of mass flux in will be g v omega v infinity plus n w into 

omega v t which is from the neighboring phase and the transferred substance rate and 



what would go out would be n w plus g omega v w, because the outgoing flux carries 

with it properties of the w state, again if I rearrange, equate in and out, then you will get 

n w equal to g b m, where b m now is omega v infinity minus omega v w omega v w 

minus omega v t and for a pure liquid in the t state omega v t will be equal to 1. 
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And how would we evaluate omega v w? It would be evaluated from equilibrium 

relation at t w, yes, this is what the Reynolds flow model shows, even for inert mass 

transfer without heat transfer. Now let us consider inert mass transfer with heat transfer. 

Now, in this case, let us say infinity state is not temperature is not equal to t w and not 

equal to t t, then the c v between infinity and t states will show that the rate of heat flux 

in will be g times h m infinity plus n w h m t and what would go out will be n w plus g 

into h m w, again equating you get n w equal to g b m h, where b m h is equal to h m 

infinity minus h m w divided by h m w minus h m t. In an inert mass transfer case, let us 

say, air and water vapor mixture, then h m would be omega v times enthalpy of the vapor 

and omega a times which is the mass fraction of a into enthalpy of a and since there are 

only 2 species omega a, I would be written as 1 minus omega v and enthalpy of the vapor 

would be c p v t minus t f plus lambda ref which is the latent heat defined at t ref and h a 

would have simply sensible heat c p a t minus t ref. 
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As you recall if you make the Louis number equal to 1 assumption then b m h would be 

equal to b m from which omega v h w t w relation is iteratively calculated. So, we can 

since n w is equal to g b m h and n w is equal to g b m. 
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So, b m is equal to b m h and we can calculate the, in case, unknown t w state and omega 

w states can be evaluated from the equilibrium relationship iteratively. This is exactly 

what we did even in Stefan flow and Couette flow models. Now, a few more interesting 

results. 
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If I consider the c v between w state infinity state and w w state and write, then you 

know this is q w, this is, here I will get n w times h t w. This will be g times h m infinity 

and there would be g times plus n w into h m w. You can see now the difference between 

h m w and h t w, h t w is the, is the enthalpy of the substance, which has been transferred 

from the neighboring phase into the interface then therefore, if I energy in will be equal 

to g h m infinity plus n w h t w and energy flux out will be equal to g plus n w h m w 

plus q w plus q w and that is what I have written here. 
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 So, on the left hand side, you have the fluxes going out and on the right hand side, you 

have the fluxes going in and therefore, if I now rearrange these equals equality then you 

will see b m h would now get defined as h m infinity minus h m w, h m w minus h t w 

plus q wall by n w. But you will recall we showed that q w minus q l where q l is the heat 

transfer in the transferred substance phase equal to n w t w minus h t l. So, I can replace 

q w from this relationship and I get another expression for b m h in terms of q liquid 

divided by n w. 
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On the other hand, if I also consider the radiation in the transferred substance phase, then 

you will see that I get, if I consider radiation in the transferred substance phase, then this 

is the w w surface, this is the t t surface. Then q l is so, q rad is so, this is n times h m t 

and here you have n w times h t l. So, I would get essentially n w h m t plus q l plus q rad 

equal to n w h t l. This would be the energy balance between w and t surfaces in the 

presence of radiation and then you will see that I can even replace q l divided by n w h m 

t l by minus h m t minus q rad by n w. So, variety of expressions for b m h can be found 

when inert mass transfer with heat transfer. 

(Refer Slide Time: 35:27) 

 

 (Refer Slide Time: 35:57) 



 

This is of great relevance because different expressions come handy depending on the 

problem at hand, the mass transfer problem at hand as we will discover, when we solved 

practical problems, we turn to mass transfer with heat transfer and simple chemical 

reaction. Now, as you know in this case, 1 kg of fuel reacts with r s t kg of oxygen to 

produce 1 plus r s t kg of product with where r s t is the kilograms of oxygen to a 

kilogram of fuel is the stoichiometric coefficient. 

So, I can write between infinity and t states, an equation for the fuel where this is the 

amount of fuel mass flux in from the bottom n w and this is the amount of fuel that will 

go out of the considered phase, carrying with it value of omega f u w and all of that must 

equal minus r f u for oxygen, likewise, same expression equal to minus r o 2 because in 

the considered phase, in the presence of chemical reaction both fuel and oxygen would 

be depleted. 

So, that is why I have shown these are the area this is the volume average reaction rates r 

f u and r o 2, but r o 2 is equal to r s t r f u and therefore, if I divide this equation by r s t 

and subtract from the first equation, I would again get essentially n w equal to g phi 

where b phi is phi infinity minus phi w and phi w minus phi t where phi is, as you know 

is a conserved property omega f u minus omega o 2 by r s t. By the same reasoning, I can 

also form write an equation for product here and I would get phi equal to omega f u 

omega product plus 1 plus r s t or omega product 1 plus r s t plus omega o 2 by r s t. Now 

these we have gone over this type of material before. The important thing is, even in the 



presence of chemical reaction, we are able to show that n w equal to g b holds, where b is 

now found from appropriate conserved property. 
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Here, we had invoked the mass conservation principle. Now, we will invoke the energy 

conservation principle and assume c p k equal to c p m as we have done earlier also, then 

h m will be omega k h k c p m t minus t ref minus omega f u del h c and that I can also 

associate del h c with omega o 2 by r s t. So, if I consider c v between infinity and w 

states, then g h m infinity plus n w h m t w would equal g plus n w h m w plus q w. 

If I take the second definition of h m, then again we would have n w equal to g b m h, 

where if I now take t ref equal to t w itself, then b m h would be h m infinity minus h m 

w h m w minus h m t w plus q w n w, divided by n w, that would result into c p m t 

infinity minus t w plus del h c omega o 2 infinity minus omega o 2 w divided by r s t del 

h c omega o 2 w minus omega o 2 t w divided by r s t plus q w by n w. Now of course, 

you can imagine, supposing I was burning a liquid fuel, it would have no oxygen. So, 

that would be, it would have no oxygen and therefore, that would be 0. If the liquid was 

at its boiling point, then no oxygen can survive there and therefore, that would be 0 and I 

would get simply c p m t infinity minus t w del h c omega o 2 at infinity divided by r s t 

and for a liquid droplet burning in air, I would readily know what omega o 2 infinity is, 

the only thing that I now need to do is to interpret q w. 
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So, for a volatile fuel or transpiration cooling by combustible gas like hydrogen, omega o 

2 w is 0 and since the transferred substance does not contain oxygen, I would get this 

expression that is what I have shown. If the liquid fuel is at its boiling point t w is equal 

to t b p, then q w minus q l would be equal to n w h f u and therefore, q w divided by n w 

will be simply c p m t infinity minus t b p del h c omega o 2 infinity by r h t lambda f u 

plus q l divided by n w. 

Now, for an atomized tiny droplet, we can say that there is hardly any temperature 

difference between w and t state. It is like saying that we have injected inside the diesel 

engine, the liquid droplet already at its boiling point. In which case, there can be no 

conduction heat transfer in the transferred substance phase and therefore, you will see 

that with q l equal to 0 and t t equal to t b p, you will get c p t infinity minus t d p delta h 

c o omega plus lambda f u, divided by lambda f u and that quantity would be 0. So, you 

can see b m h can now be evaluated very easily, because boiling point of a liquid is 

known, delta h c the heat of combustion of the fuel is known, omega o 2 infinity would 

be typically known and the stoichiometric coefficient in the simple chemical reaction 

would also be known, along with the latent heat of the fuel. So, all quantities are known 

and b m h can be evaluated very very easily. 
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Now, when it is difficult to ascertain mass fractions of compounds in different states, it is 

preferred to use the conserved property n alpha equal to n alpha k omega k n alpha k 

being equal to the molecular weight of alpha, the element alpha divided by molecular 

weight of the species in which it occurs. So, again if I do c v between infinity and t 

states, then element balance would give me n w equal to g b m, really easy to see this and 

b m would be again, eta alpha in infinity w w and t states. Many a times, we will find 

that it is much more convenient to combine different eta alpha into a new conserved 

property variable phi, as was shown in lecture number 32, where we consider the burning 

of graphite. 



(Refer Slide Time: 42:56) 

 

In all cases, we now find that the Reynolds flow model results into n w equal to g b, 

where b is equal to psi infinity minus psi w divided by psi w minus psi t, psi can be in 

only omega v, it can be element fraction eta alpha, it can be mixture enthalpy h m or it 

can be an appropriately defined phi from the participating species. Any linear 

combination of psi’s are also solutions. So, we can add any of these types of psi for our 

convenience. 

The result n w into g from the Reynolds flow model is different from the result n w g star 

l n 1 plus b from 1 d Stefan flow model, which was essentially diffusion model and the 

Couette flow model. Both of them had logarithmic form whereas, here it is a g into b, it 

is much more like the ohm’s law type of model. The result from the model correctly 

identifies b f in momentum transfer and shows that g would be equal to h cof v w by c 

pin single phase convective heat transfer. 

So, the Reynolds flow model result will be employed to provide the interface boundary 

conditions to the boundary layer flow model in the next lecture and we will see how this 

can be done in the next lecture. 

 


