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In lecture 32 we looked at Stefan flow model which is essentially a diffusion model to be 

applied to stagnant surroundings and therefore, momentum equation was not invoked. 

Only the species transfer and the energy equations were invoked. We applied these 

equations to the 3 types of mass transfer or 4 types of mass transfer that we normally 

encounter. There is a one is the inert mass transfer without heat transfer, inert mass 

transfer with heat transfer, then mass transfer with heat transfer and simple chemical 

reaction and then finally, we applied it to the case of mass transfer with arbitrary 

chemical reactions. All these four types almost described the overall problem of mass 

transfer. 

Today, we are going to consider the Couette flow model and therefore, we shall be 

invoking both the momentum equation and continuity equation along with the species 

transfer and the energy equation. 
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So, we shall apply the Couette flow model to mass transfer with wall suction and 

blowing. This is essentially a case of, let us say, air flowing over surface and air itself is 

being sucked or blown through the wall which would be the simple case of suction and 

blowing that we considered even with similarity solutions. 

Then we will move to the general problem of convective mass transfer and in this, we 

shall interpret the effective mass transfer coefficient which we shall term as g star and by 

way of an example we will calculate, estimate, the evaporation slash burning time of a 

liquid droplet. 
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So, let us begin then with the momentum transfer with wall suction and blowing. Now, 

in the Couette flow model as you will recall, the velocity u is taken to be constant 

multiplied by y and all actual derivatives are set to 0 and therefore A is constant. Under 

steady state [transport/transfer] equation would read like this: d by dy of N psi y equal to 

d by dy of rho m v psi minus gamma plus gamma t, where gamma t is the turbulent 

exchange coefficient; d psi by dy equal to S psi just by way of the reminder that the 

Couette flow model is really let us say, this is the surface. We assume that the velocity 



profile will be like. So, with u infinity here all d by dx are 0 for all variables and u 

infinity remains constant along the plate and this is the direction y. 
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So, this is really the Couette flow model; the mass transfer would be taking place in this 

direction. If you look at the meanings of psi, psi equal to 1 would imply simply 

continuity equation or mass conservation equation, psi equal to u will imply momentum 

equation with gamma equal to mu and then if it is a mass transfer mass fraction omega k 

this would be the species transfer equation and this would be the energy equation. 

We have ignored the radiation and other heat generation terms here; m double dot y k is 

really the Fick’s law of diffusion flux given by the Fick’s law and rho m V A will be m 

dot w is equal to constant which is a mass flux would remain constant. 
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Let us consider momentum transfer. If psi is equal to u, then the governing equation 

remember, there is no source term here but the pressure gradient is also 0 and therefore 

the equation will be d by dy N w u minus mu plus mu t du by dy equal to 0. If I integrate 

this once and note that the boundary condition is u equal to 0 at y is equal to 0, the shear 

stress is given by mu times du by dy y equal to 0 of course mu t would be 0 at the wall. 

The constant of integration C will be simply minus tau wall and hence the integrating 

from 0 to infinity would give me du divide by N w u tau w equal to 0 to delta dy mu plus 

mu t which I am for the moment calling it as constant C 1 - some integrated value C 1 

and the integration of this term would simply result in 1 over N w ln 1 plus N w U 

infinity by tau w. 

But what is N w u infinity by tau w? We can interpret that; remember, N w is rho times 

V w because the same air, same fluid is being blown into the boundary layer as is 

flowing over a plate rho V w U infinity divided by tau wall. If I multiply and divide this 

by U infinity then, I would get V w divide by U infinity equal to rho U infinity square by 

tau w which is nothing but V w by U infinity C f x by 2 and as you will recall this is 

nothing but the blowing parameter which we had invoked during similarity solutions and 

integral solutions. 
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So, essentially then N w would be 1 over N w ln 1 plus B f would equal some constant C 

1. That is what I have written here In 1 plus B f would equal C 1 times N w and C 1 rho 

U infinity B f over C f x by 2 because, N w is rho V w which can be written as rho U 

infinity B f C f x by 2. 
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Of course, as B f tends to 0, the C f x must tend to C f x at v w equal to 0 and then 

assuming that this integration, that is, integration 0 to delta mu plus mu t would remain 

the same whether there is mass transfer at the wall or no mass transfer at the wall which 



of course would be exactly true if it was a laminar boundary layer. But, even in turbulent 

boundary layer if we say that mu t essentially is a function of y and not effected by 

whether as you will recall from Prandtl’s mixing length, there it will not be too seriously 

affected. 
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If we assume C 1 is independent of whether v w is finite or 0 we can show that it follows 

from this equation that C f x v w divided by C f x v w 0 would be ln 1 plus B f by B f. 

This equation is applicable to both laminar and turbulent flows and it is derived for dp dx 

equal to 0 but can be taken to be valid even for mild pressure gradients as was done 

during integral analysis of momentum equations in our previous analysis of fluid flow 

problems. 

Now, for all 4 types of mass transfer I am not going to re-derive as I did in case of Stefan 

flow. I will simply say that in each case we simply converted the applicable mass 

transfer and energy transfer equation to a conserved property equation with appropriately 

defined conserved property psi. 
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So, for all types of mass transfer and an appropriately defined conserved property, psi N 

w will be equal to N psi y equal to constant and hence for conserved property instead of 

psi, I can also take psi minus psi w as a conserved property then N w into psi minus psi 

w gamma plus gamma t d by dy psi minus psi w is equal to 0 or N w into psi minus psi w 

minus gamma plus gamma t d psi by dy equal to C 1 - some constants C 1. Now, 

remember d psi omega d psi w by dy is of course always 0, so that is that does not appear 

here but d psi by dy would certainly survive. 

Then if I write this equation in the w state then I would get C 1 equal to gamma d psi by 

dy at y equal to 0 and if I write it in the T-state I will get N w psi minus psi t minus psi w 

and in the T-state there are no variations of psi and therefore this entire term would be 0. 

Again, C 1 and therefore equating the 2 equations, because they are both equal to C 1, I 

would get C 1 equal to N w psi t minus psi w equal to minus gamma d psi by dy at w and 

at w-state gamma t is equal to 0; so that is what I have stated here. 
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We shall make use of this equation and substitute for C 1 here. C 1 equal to N w psi t 

minus psi w; I will substitute that here on the next slide and you will see that therefore, I 

would get N w psi minus psi t minus gamma plus gamma t d psi by dy equal to 0. If I 

integrate this equation from w-state y equal to 0 to infinity state y equal to delta then I 

will get 1 over N w equal to 0 to infinity d psi by dy d psi by psi minus psi t equal to 0 to 

delta dy gamma plus gamma t, where gamma in case of energy gamma is k by C p in 

case of species transfer it is rho m times diffusivity. 
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So, let us say that integral like in the previous case we will say is equal to C 2. Let us say 

then the integration of the left hand side would give me N w equal to 1 over C 2 ln plus 

B psi because, same as previous case B psi is equal to psi infinity minus psi w divided by 

psi w minus psi T. N w will be from the previous slide N w would be C 1 divided by psi 

T minus psi w and that would equal minus gamma d psi by dy at w psi T minus psi w. 

So, we have got 1 equation which is of this form and the other equation which is of this 

form the first containing C 2 and the second containing C 1. 
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Now, consistent with the theory of heat transfer, we may write minus gamma d psi by dy 

at w is equal to g times psi w minus psi infinity, where g is now the mass transfer 

coefficient. 
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If I replace this quantity by this quantity in the previous expression here then, I can get C 

1 from there in terms of g. Therefore, the final form would look like N w equal to g time 

psi infinity minus psi w divided by psi w minus psi T, or simply g times B psi and g itself 

would be 1 over C 2 times ln 1 plus B psi divided by B psi. 



If I assume that as B psi tends to 0 g tends to g star, the mass transfer coefficient let us 

say it tends to g star corresponding to B psi tending to 0. Further, and if I say that C 2 

remains constant with or without mass transfer as we said earlier, this statement is of 

course perfectly true for laminar boundary layer. But, even if I say it is true for turbulent 

boundary layer where 1 over where gamma t would be function of y then, it follows that 

g over g star would be simply ln 1 plus B psi by B psi. 
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This is a very important result thus the fictitious g star flux is now given by N w g star ln 

1 plus B psi, where 1 over g star is equal to is equal to C 2 which is equal to 0 to delta dy 

over gamma plus gamma t. 

So we can now view g star itself as the sum of layer by layer from 0 to delta resistances 

to mass transfer in the considered phase over the width delta because, remember this is 

the diffusion coefficient. So, one over diffusion coefficient would simply be resistances 

resistance and we are simply saying that 1 over g star which itself is a kind of a 

resistance because g star is conductance then 1 over g star would be simply layer by 

layer addition of resistances to mass transfer in the considered phase. 

This interpretation of g star enables its evaluation from gamma y equal to gamma psi in a 

laminar boundary layer and from the known gamma t y from a turbulence model like a 

mixing length. Or for example, in a turbulent boundary layer thus the Couette flow 

model permits study of the property variations. Remember, a gamma itself could be a 



function of psi of temperature or the mass fraction itself gamma t on the other hand 

would be function of the turbulence characteristics of the boundary layer. In fact, if 

gamma is equal to constant and gamma t is equal to 0 which is the case of a laminar 

diffusion problem, then g star would be simply gamma by delta which is same as the 

Stefan flow model in which g star was shown to be equal to gamma by L. 

We have recovered most of the features of the Stefan flow model for gamma equal to 

constant and gamma t equal to 0 and g star would then be gamma by L ln 1 plus B psi 

which is what we had shown in the Stefan flow model. 
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Now, if we consider the case of pure heat transfer in the presence of suction and blowing 

something we have solved by similarity method then, with psi is equal to h m equal to C 

p T because it is an inert situation, just considered phase as air flowing over it and 

suction and blown fluid is same as the fluid in the considered phase its temperature may 

be same or different, that does not matter. but Therefore, we would get minus k d T dy 

equal to 0 which is the heat flux and that would equal g times C p into T w minus T 

infinity according to our model and that would equal heat transfer coefficient for suction 

and blowing into T w minus T infinity. 

So, that is what the heat transfer coefficient is and therefore we deduce that the heat 

transfer coefficient for finite v w is nothing but g by C p and likewise h cof v w equal to 

0; that is in the absence of mass transfer would be equal to g star by C p because g star is 



a value of g when v w is equal to 0. Therefore, we deduce that g over g star would also 

be equal to h cof v w divided by h cof v w 0 equal to Stanton x at v w for v w divided by 

Stanton x for v w equal to 0. That would equal ln B h by B h where B h now is T infinity 

minus T w over T w minus T T because, specific heats in all states are taken to be 

constant at the moment. 

Now, this relation was found to be applicable in real boundary layer flow in lecture 30, 

we will recall and therefore the Couette flow model captures also the features of a real 

boundary layer flow. 

So the Couette flow model on the one hand when gamma t is 0 captures this Stefan flow 

model feature and it also captures the boundary layer flow features at least when the 

species are the same; it captures both the features. 
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Now, we turn to the application of these two evaporation and burning in which we shall 

invoke the previous expression for can be used instantaneously to estimate the 

evaporation or burning time. Thus, let us say if I have rho l dV by dt is equal to minus m 

dot w which is the rate of change of mass is equal to minus m dot w k g per second and 

that would equal A w N w and that would equal minus A w g star ln 1 plus B psi where 

A w is the area of the surface through which the mass transfer is taking place. 



Then, integrating this from time t equal to 0 to complete evaporation when the volume 

disappears gives us the relationship t evaporation or burned is equal to minus rho l ln 1 

plus B psi equal to v initial to 0 dV by A w g star. Now, let us say if we are considering a 

liquid droplet and diffusion mass transfer that is gamma t is equal to 0 then A w will be 

equal to 4 pi r w square V will be 4 pi 3 pi r w square and g star will be gamma h by r w. 

As you will recall then, hence you will see that evaporation or burning time would be 

minus rho l divided by 1 over B psi r w i to 0 r w by gamma m h dr w and that will yield 

the so called D squared law rho l D w i square h times gamma h ln 1 plus B psi. 

This expression is used extensively in designing dryers and so on because, all it says is 

that if you reduce, the smaller the diameter of the droplet, faster will be the drying 

achieved; because, if you reduce the diameter by a factor of 2 the evaporation time will 

reduce by factor of 4 in stagnant surrounding. This will be considered as a guidance for 

atomization of fuels atomization of let us say milk which is to be dried into a powder and 

or in a cooling tower where you send hot cooling water for cooling purposes, then in a 

shower, then you want to reduce the diameter as small as possible so that you get very 

quick drying and a smaller dryer or a cooling tower. 
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Now, let us say the liquid droplet was in a convective environment as in inside a diesel 

engine whereas, you know in a diesel engine the liquid droplets are injected in a 

atomized state and they come out like a cloud. When the piston is at d t top dead center, 



the temperature is already very high in the surroundings and the droplets evaporate and 

then burn inside the cylinder. 

We can assess such we can evaluate the evaporation or drying times for evaporation or 

burning times in such situations; but, the environment there is convective because the 

pistons head is modeled in such a way that there is a swell inside the cylinder. So, the air 

movement and the particle and the droplet movement there is a relative velocity between 

them. So, essentially you get now convective evaporation or convective drying. Same 

thing happens when you have a cooling tower where the droplet is falling down through, 

let us say, stagnant air; but, that sets up a resultant velocity between the droplet and the 

surrounding air which is stagnant. 
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On the other hand, in thermal power stations you will recall that we have cooling towers 

like that and the air ingresses like this. and on Here you have showers of water where the 

cooling water from the condenser falls down and there is an air. So, you have a counter 

current of air and water and therefore the liquid droplets evaporate under counter flow. 

So, the relative velocity is additive of the air flow and the water flow droplet flow which 

is coming down step in the process that the water gets cooled and they send back to 

condenser. Of course, some amount of water is lost because the air moving upwards 

picks up some moisture which has to be topped up; of course, from time to time so that 

the condenser is not starved of cooled water. 



(Refer Slide Time: 23:35) 

 

In such situation, we can use a short cut method and thus we can say that m dot w that is 

mass transfer rate under convection divided by mass transfer rate under diffusion would 

be mass transfer rate under convection. According to the Couette flow model is g star 

times A w which is 4 pi r w square ln 1 plus B and mass transfer rate. According to 

diffusion model which is a Stefan flow model is, rho m D 4 times pi r w into ln 1 plus B. 

Therefore, canceling the terms you will get 1 over 2 g star D w which is the diameter of 

the droplet divided by rho m diffusivity and this quantity like Nusselt number is called 

the Sherwood number in mass transfer. The analog analogous to Nusselt number, we 

have a Sherwood number which is essentially g star the mass transfer coefficient into the 

diameter divided by rho m D which is equivalent of the conductivity of the fluid. 
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Now, if I use analogy between heat and mass transfer for Lewis number 1 then, you 

know that the for a flow over a sphere you know that the Nusselt number is 2 plus 0.6, 

Reynolds raised to 0.5, Prandtl raised to third, but I can now say Sherwood number 

would be 2 times 0.6 Re raise to 0.5 Schmidt number raise to one-third where Re is the is 

based on the relative velocity between the gas and the droplet - the diameter of the 

droplet and the kinematic viscosity. Or this expression for example, would now get 

changed to 2 times rho l ln 1 plus B psi r w i to 0 r w dr w divided by gamma h 2 plus 0.6 

Re D w 0.5 Schmidt number raise to 1 by 3. 



Now, since this also contains the radius r w wired because D w is 2 times r w this 

expression integration requires numerical integration because close form solutions are 

not found. 
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Let us take for example: if I took a problem, let us say a water droplet D w i is 1 

millimeter diameter at 25 degree centigrade evaporates in air whose relative humidity is 

let us say 25 percent then and temperature is 25 degree centigrade, so that this is a case 

of mass transfer without heat transfer and no chemical reaction. Let us assume that the 

relative velocity between the 2 is 5 meters per second; so estimate the evaporation time 

and take Schmidt number equal to 0.6 which is quite typical of gaseous mixture. 
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So, this is a mass inert mass transfer problem without heat transfer the mass fractions are 

in the infinity state corresponding to 25 percent RH and T equal to 25 will give you 

omega v infinity equal to 0.0078 omega v w corresponding to 100 percent relative 

humidity at the droplet surface. 25 degree centigrade will be 0.02 B m, would be omega 

vapor and the infinity state minus omega vapor in the w state and omega vapor in the w 

state minus in the T state which is the transfer state and that would be equal to 1. 
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So, using this definition for omega v as we did in problems on diffusion mass transfer the 

B m would turn out to be 0.0124 at the mean conditions between the infinity and w states 

mixture density can be evaluated as 1.177 kilograms per meter cube. Liquid density 

would be 1000 kg per meter cube; whereas, a water diffusivity from the lectures we say 

that the diffusivity of water vapor through air is 2.376 into 10 raise to minus 5 and nu m 

will be diffusivity into Schmidt number which will be equal to 1.42 into 10 raise to 

minus 6. 
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So, knowing nu m we can evaluate and u relative we can evaluate the Reynolds number 

that is required here. In the Reynolds number expression and D m which is required here 

to calculate gamma h because this is rho times D m. So, we can carry out the numerical 

integration with time step 0.01 second. Then evaporation time at r w equal to 0 would be 

2.05 second and the radius would vary in this fashion 0.5 mm to start with and then it 

drops down very gradually to 0 value here at above 2.045 seconds. 
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We can solve the same problem in stagnant surroundings by simply setting u relative 

equal to 0; which means that the Reynolds number here is 0 and therefore this will be 2 

times gamma h. Then you will see that the evaporation time becomes 4.66 seconds. So, 

clearly having a relative velocity between the gas and the droplet has reduced the 

evaporation time and this is the principle that is used in cooling towers and in diesel 

engines for the purposes of reducing the size. In case of cooling towers and in diesel 

engines, this is of great value because it enhances the rate of burning of the fuel and 



which incidentally also reduces the cut off ratio of a diesel engine which in turn 

improves the efficiency of the engine. 
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So, finally in summary then we can say that a Couette flow model with area equal to 

constant and u equal to constant times y and d psi by dx equal to 0 gives us the formula 

N w equal to g star ln 1 plus B psi, where g over g star is equal to ln 1 plus to B psi by B 

psi. 

We interpreted the g star flux as the sum of the layer by layer resistances to mass transfer 

in the considered phase over boundary layer width in pure momentum and heat transfer 

in the presence of suction and blowing. That is without gradients of species of any kind 

because the same species being sucked or blown. We have shown that C f x in the 

presence of suction and blowing divided by c f x in the absence of it is simply ln 1 plus B 

f by B f and the heat transfer likewise would be ln 1 plus B h by B h. 

So, Couette flow model recovers essentially the results expected from a boundary layer 

flow model it also recovers the results expected from the Stefan flow model and in turn 

gives us an opportunity to evaluate the effect the property variations which we shall take 

up in subsequent lectures. 



So, in the next lecture we will develop very similar results to what we have shown in 

Couette flow model via the algebraic Reynolds flow model and you will see what form N 

w and B relation has as per the Reynolds algebraic Reynolds flow model. 


