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We are now familiar with the 3 simplifications of the boundary layer flow model. The 

first one was the Stefan flow model; second one was the Couette flow model and the 

third is the Reynolds flow model. 

In today’s lecture, I shall develop the Stefan flow model further for variety of mass 

transfer problems that we encounter in engineering practice. 
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The types of problems that we encounter are as follows: first is the inert mass transfer 

without heat transfer or chemical reaction. This means, something like simple 

evaporation of water where the water and the environment are all at the same 

temperatures. So, there is no temperature gradient and as a result, there is no heat 

transfer. Nor is there any chemical reaction because, water simply evaporates without 

any chemical reaction and the mass transfer however takes place because of the 

concentration gradients.  



The next would be where let us say, the water droplet or water itself in a lake is at a 

different temperature from that at the infinity state or the environment. In which case, 

there would be heat transfer either through the water or from the water to the 

environment depending on which temperature is larger. Then, we will move to the 

situation in which there would be chemical reaction or combustion in which, let us say, 

liquid droplet or a would be burning along with heat transfer from the environment to the 

droplet and finally, but there we would use what is called as simple chemical reaction 

and I will explain what that means. 

But many a times, particularly when dealing with burning of solids, we need the reaction. 

Mechanism is so complex that we have to deal with that situation somewhat differently. 

So, I will develop the forms of mass transfer relationships that evolve for the 4 types of 

mass transfer problems. 
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As you recall, under steady state, the mass transfer equation would be something like 

this: N psi y A equal to all that and psi can stand for mass fraction or element mass 

fraction or enthalpy; the radiation term is of course a neglected in this energy equation 

and m dot double prime y k as you will recall, is the diffusion mass flux as per the Fick’s 

law of diffusion. 



So, these are the source terms in each of these equations; R k would be finite when there 

is a chemical reaction; if not, it will be 0. 
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So, let us consider the first type: inert mass transfer without heat transfer. Let us say I 

have a tank here with water in it and the water evaporates because in the infinity state the 

air is either dry or has relativity less than 100 percent. Therefore, there would be mass 

transfer from water to the infinity state. The column height that I have considered above 

the water is L and the air in the column is stagnant. Stefan flow model as you know, is 

primarily applied to diffusion mass transfer; both water and air are at the same 

temperature and therefore there is no heat transfer. 

Air also does not dissolve in water; as such there will be no transfer of air from the 

considered phase into the water phase steady state prevails. That is, water is supplied at 

the bottom at the evaporation rate. What this means is that, somehow we have 

constructed an apparatus in which water is supplied at the same rate at which it is 

evaporating and therefore the column height L would remain constant or the water level 

will remain constant. 
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Now, in this problem we have two species: one is the air a and the water vapour v and 

therefore the governing equation for this, because there is no mass there is no chemical 

reaction as you will see in the previous equation, N v y A would be equal to 0 for both 

air and water. So, that is what I have written here; this means that the mass transfer rate 

m dot w in kg per second would be area A w into N w equal to A times N v y plus N a y 

equal to the constant because this is gradient, is 0. 
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But, in stagnant air, m a w is equal to 0 because there is no mass transfer of air in this. It 

is stagnant and therefore, omega a plus omega v is equal to 1. We note this and therefore 

in this equation you will see that N a y will be set to 0 and m dot w would be simply A 

times N v y and that is what I have written here (Refer Slide Time: 06:15). 

So, m dot w will be m dot of vapour only equal to A times N v y and N v y as you know 

is the convective mass flux plus diffusion mass flux and that would be equal to A rho m 

V. Or if I rearrange this, notice that A rho m V is simply m dot w. Therefore, m dot w 

into omega v minus rho m D A into d omega v by dy would be equal to m dot w or if I 

transfer this on the right hand side then, you will see it will be 1 minus omega v equal to 

m dot w by rho m D dy by A (Refer Slide Time: 06:50). 
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If A is equal to A w is equal to constant, that is, if I take the constant area model then 

simply, N w which is equal to m dot w by A w and integration would give me rho m D 

by L ln 1 minus omega v infinity over omega 1 minus omega v w equal to g star m into 

ln 1 plus B m. This bracket 1 minus omega v infinity into 1 minus omega v w, can also 

be written as omega v infinity minus omega v w over omega v w minus 1 and g m star 

would be rho m D by L. It has the same units as the mass flux N w and this is a constant 



and written in this form. B m is called the driving force from mass transfer to occur and 

it is given in this fashion. 

So, you get a very simple logarithmic formula for mass flux or the evaporation rate, 

instantaneous evaporation rate of water in the spherical system. Supposing, I have a 

droplet then, the surface area A would go on changing with the radius and A would be 

equal to 4 phi r square as we go along and A would go on changing. So, A would be 

function of y if you like. In that case, you will see d omega v 1 minus omega v would 

equal m dot w rho m D into dr by 4 pi r square. Integration from r equal to r w which is 

the droplet radius to r equal to infinity, gives ln 1 minus infinity over 1 minus omega v w 

equal to this quantity with r w in the denominator. Remember, 1 over r infinity would be 

0 and therefore only r w survives. 

If I rearrange this equation it would be written in this fashion N w will be equal to m dot 

w divided by area of the spherical droplet 4 pi r w square, would be equal to rho m D r w 

into this quantity (Refer Slide Time: 09:30) which again can be written as 1 ln 1 plus B 

m, where B m is again as before omega B infinity minus omega v w into omega v w 

minus 1 and g m star which is the coefficient. If you like a is rho m D divided by r w 

instead of l in the previous problem when the area is constant. 
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So, we get mass flux in this. Again, logarithmic form, even area changes; so both the 

results show that in diffusion mass transfer, you get N w equal to g star m ln 1 plus B m. 

But, as B m tends to 0 you can check out on your pocket calculator that ln 1 plus B m 

tends to B m for both positive or negative B m. Thus, the linear variation N w g into B m 

holds only for very small mass transfer rate B m or N w whichever way you want to look 

at it. Typically, when B m is of the order of 0.02 or less, this relationship holds very well 

and when B m is negative then of course, it will imply condensation. When B m is 

positive it would imply evaporation therefore, in general we may write N w equal to g B 

m where g over g star m is equal to ln 1 plus B m by B m and where g star is the value of 

g when B m tends to 0. 

Now, although this result has been found from for diffusion mass transfer, we shall later 

on show that the result has significance even in convective mass transfer. Let us now 

consider the case of inert mass transfer with heat transfer in which case let us say, the 

water and the environment are at different temperatures. 
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So, let us say in temperature the environment is greater than that of the surface where T 

w is the temperature of the water surface. Then, under steady state besides species 

conservation equation, we must now invoke the energy equation and that for as you will 

see from our first line here we are invoking this equation. 
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So d N v y h m A divided by dy would be d by dy of A k m dT dy which is the 

conduction heat transfer plus this is the Fick’s law of diffusion, multiplied by h k which 

is in this case would be omega v by dy h of vapour plus d omega a by dy h of air and the 



mixture enthalpy in this case would be the mass fraction of water vapour into enthalpy 

water vapor plus 1 minus omega v which is the mass fraction of air into enthalpy of air. h 

v would be given by specific heat of vapor into T minus T ref plus lambda ref which is 

the latent heat at temperature T ref and h a would have only the sensible part C p a into T 

minus T ref. The mixture specific heat could be simply omega v into C p v plus omega 

air into C p a; so that is what this formula end. 

Now, let us look at this term k m dT dy; now k m can be written as rho m alpha m C p m 

dT by dy and that is equal to rho m alpha m. If I absorb C p m dT dy and put C p m equal 

to all this, you will see that you get omega v into d h v by dy plus omega a into d h a by 

dy. 
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This result… this is an important one which we are now going to substitute here. So, you 

will get d N v y h m A by dy equal to d by dy of rho m A alpha m omega v d h v by dy 

plus omega d h a by dy plus the second term which is the Fick’s law of diffusion term 

which carries with it enthalpy of the species. 

Now, in mass transfer problem it is common to define Schmidt number as nu by 

diffusivity and we define Lewis number as Prandtl divided by Schmidt number which is 

equal to diffusivity of mass divided by diffusivity of heat. 



Now, for gaseous mixtures, Lewis number is very close to 1 for example, as you know 

Prandtl number is about 0.7, Schmidt number would be about 0.672.68 in this kind of 

system. So, in effect Lewis number Le can be taken as very nearly 1 which implies that 

D is equal to alpha. If I make that assumption, then you will see that and replace these 

rho m into D into rho m into alpha as gamma. As I have defined here (Refer Slide 

Time:15:00), gamma m h equal to rho m D equal to rho m alpha m. Then you will see 

this becomes gamma m h into A plus d by dy of simply product of omega v h v plus 

omega h a, which is nothing but the mixture enthalpy d h m by dy so we essentially get d 

by dy N v by h m A equal to d by dy of this. 
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Now from species conservation we have learnt that N v y remains constant which is 

equal to N w. This the mass transfer as the surface itself remains constant throughout in a 

constant area problem. Then hence, the last result can be written as d by dy of N N w h 

m minus h m T minus gamma m h into d by dy h m minus h m T where h m T is simply 

the enthalpy of the transferred substance and it is a constant. 
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So, all I have done is really added or subtracted h m minus h T and here h m minus h T 

and therefore, I have made really no change. So, h m T would be the C p of the liquid 

into temperature of the transfer substance which is water in this particular example minus 

T ref is the specific enthalpy of the makeup water deep inside the neighboring phase. C p 

l is the specific heat of the liquid. Now, this is again a conserved property equation in h 

m minus h m T. So, it is exactly same as the equation we had for omega v and therefore 

its solution 2 would be identical m w equal to g star m h ln h m infinity minus h m T 



over h m w minus h m T which I would write as g star m h into ln 1 plus B h. In this 

case, where B h is now formed from h m minus infinity minus h m w over h m w minus 

h m T and g star m h would be gamma m h over r w in case of a spherical system and 

this would be the case in case of a linear system (Refer Slide Time: 16:50). 

So, we find that the logarithmic form is again retrieved from the solution of the energy 

equation because just as we had recovered the logarithmic form in case of mass transfer 

without heat transfer 
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Now, since Lewis number is equal to 1, gamma m h would be equal to gamma m and 

gamma h because thermal diffusivity is equal to mass diffusivity and hence you will see 

B h which is h m infinity minus h m w or h m w minus h m T would also be equal to 

omega v infinity minus omega v w omega v w minus 1. Now, this relation provides the 

important link with between the mass fraction of vapor at the wall and the temperature of 

the wall. Remember, when the temperature of the surroundings is at T infinity and the 

liquid which is T; T is at some other temperature we still do not know what the surface 

temperature T w will be and we need to determine that in such problems. 

So, how do we determine that? We use this relationship that is, B m is equal to B h and h 

m w would be then h v w omega v w h a w into 1 minus omega v w and if I take T ref 



equal to 0 then h m w will be simply C p a into T w into C p v minus C p a T w plus 

lambda at 0 degree lambda at T ref equal to 0 into omega v w. 

Hence, for a given T infinity and T T the B m equal to B h relationship will iteratively 

give omega v n omega and T w. So, what one does is, one simply assumes a value of T w 

h m infinity of course, can be obtained because you know already omega v infinity. You 

know T infinity and therefore that can be obtained; these two can be obtained as we saw 

on the last slide. This can be obtained knowing T w. Only thing is, you do not know 

omega v w. So, how do we get that omega v w? We can get that by saying that at the 

surface of the water saturation conditions would prevail and corresponding to RH equal 

to 100 percent. Therefore, that value of omega v w can be noted either from the 

psychometric chart or you can also use steam tables in which case, you will get a partial 

pressure so that from which you can recover the mass fraction of the wall. 

If, after assuming T w you have determined omega v w in this way, you substitute in the 

B m expression; if you find that B h is equal to B m then obviously, your choice of T w 

was correct and therefore you already have T w omega v w relationship. If however, the 

2 equations do not balance then, you must change the value of T w till you get balance 

between B m and B h. So, iterations are involved in discovering temperature T w. 
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Now, in order to help, if you are doing something on the computer then for air water 

vapor mixture saturation condition, that is the saturation curve on the psychometric chart 

is given like this; where this is the T dribble and this is the specific in humidity and you 

have the 100 percent RH line (Refer Slide Time: 20:15). The values corresponding to 

this have been correlated here in omega v w as a function of T w for the range of T w 

minus 20 to 100. For computer applications, in order to help iterations you one can use 

this relationship or simply try by hand; this is just for your information. 

So, now of course, when we consider a fuel we do not know the omega v w T w 

relationship by way of a psychometric chart or anything like that and therefore, such a 

relationship must be determined from what is called that the Clausius-Clapeyron 

equation. In that case, you will see that omega v w is related to X v w into molecular 

weight of vapor divided by molecular weight of the mixture and X v w of course, is 

equal to P saturation at T w divided by P tot. X v w would be given by exponential of 

minus h fg divided by R g into 1 over T w minus T bp for all liquid fuels. Typically, you 

will have a boiling point known and h fg known and therefore X v w can be recovered 

for a given T w. 

So, one try is in such cases assume at T w recover or calculate X v w; from that, you 

calculate omega v w and check whether B m is equal to B h as on the previous slide or 

otherwise go on changing T w till you get convergence. 
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Now, I turn to the problem of mass transfer with heat transfer and simple chemical 

reaction. Now, what is simple chemical reaction? Let us consider highly volatile liquid 

fuel that burns in the considered phase according to the Simple Chemical Reaction SCR. 

Liquids usually burn by first evaporating in the gas phase without any change in 

composition. That is, the chemical formula of the fuel does not change when it comes out 

in the form of a vapor; but then, it burns in the vapor phase, in the gaseous phase as the 

homogeneous combustion and we say that simple chemical from reaction simply implies 

that 1 kilogram of fuel combines with r st kilograms of oxygen to give you 1 plus r st 

kilograms of products. Now, where r st is the stoichiometric ratio of the fuel and you 

must have run from your stoichiometry, how to evaluate say for example, hydrocarbon 

fuel? How to evaluate the value of r st? 

In this problem therefore, we have 3 species. The fuel specie, the oxygen specie and the 

product which is itself a mixture but it is a product specie which we take it as a single 

specie. Then we will have 3 equations and because the chemical reaction is present, you 

will have convective flux and a diffusion flux d by dy of wood, equal rate of depletion of 

fuel. We therefore, I have said magnitude of R fu with a negative sine likewise, oxygen 2 

would deplete minus R o. Whereas, the product would increase and therefore it has a 

plus sign in front of here so we have 3 equations because we have 3 species - 3 mass 

transfer equations. 
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If we add the 3, we must retrieve the bulk mass conservation equation because the 

addition of the fuels, fuel oxygen and product; some of these will be equal to 1 and when 

all these are sum that will be equal to 1, so D 1 by dy would be 0. 
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So, some of the diffusions, fluxes would add to 0 and therefore you will be having A N 

w d by dy of N w into sum of all these quantities and therefore, the sum of the R k must 

also be equal to 0 because the bulk mass conservation. 



So, therefore SCR simply implies that R o 2 the oxygen depletion rate is equal to r st 

times fuel depletion rate. On the other hand, the product generation rate would be minus 

1 plus r st times fuel depletion rate. Likewise, the diffusion of oxygen would be r st times 

m dot f double preview and product will be minus 1 plus r st m double dot fu. 
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If I now divide this equation by r st and then subtract the resulting equation, I divide by r 

st throughout and which is a constant and subtract that equation from this equation, then 

you will see that R fu minus R o 2 divide by r st would be 0. 

(Refer Slide Time: 25:48) 

 



(Refer Slide Time: 26:06) 

 

(Refer Slide Time: 26:14) 

 

As a result, you will get an equation which is like this d by dy of A N w phi minus 

gamma m d phi by dy equal to 0 and phi will be omega fu minus omega o 2 by r st. 

Likewise, if I divide this third equation by 1 plus r st throughout n add then again the 

right hand side would be 0 and I will have a phi which you will stand for omega fu plus 

omega product over 1 plus r st. We said that any equation of this form with the 0 source 

term implies that phi is a conserved property. 



So, we have again got an equation of conserved property like the inert mass transfer 

problem and therefore we would have N. Solution of that would be N w equal to g star m 

ln phi infinity minus phi T over phi w minus phi T equal to g star m ln 1 plus B m, where 

B m would be given. Now, by this quantity phi infinity minus phi w over phi w minus 

phi T and phi, can stand for this group or it can stand for this group, do not one use the 

appropriate group depending on the convenience of the problems at hand. g star m would 

be gamma m d or by r w in spherical system or gamma m divided by L in the plane 

system. The important thing to note is that, even in a problem involving combustion we 

are able to reduce the problem mathematically to a form just like that of evaporation of 

water in the absence of heat transfer. 
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So let me now turn to energy part of the… because, whenever combustion takes place 

there would be heat transfer. Now, we would have d by dy of A N w h m minus k m d T 

dy would equal d of the diffusion mass transfer of dy. You remember from slide 1, this is 

the right hand side and this is the equation that I am writing now. 
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This is the energy equation, then equal to the right hand side; this is the right hand side 

where h sub k is the species enthalpy and as you will know that whenever you have 

reacting fuel we write it as h naught f k as the enthalpy of formation plus C p k into T 



minus T ref or for short I will write as h naught f k C p k delta T. Hence, making use of 

definitions of phi, let us say h m would be simply omega k h k and therefore, it will be 

omega k h naught f k plus delta T into sigma C p k omega k. Then the first part of the 

term would simply result in omega fu h naught fu plus omega o 2 h naught f o 2 plus 

omega product into h naught f product and C p k omega k would be simply C p m the 

mixture specific heat into delta T. 
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Now, from the previous slide we have defined phi. So, I can say that omega o 2 by r st 

will be minus omega product over r st. So, that is what I am going to use here. I am 

replacing omega product by 1 minus r st over r st omega o 2 equal plus C p m delta T. 

Omega o 2 itself would be equal to omega fu r st into all these and as a result, you will 

see I get omega fu into h naught fu plus r st h naught o 2 h naught f o 2 minus 1 plus r st 

h naught f product plus C p m delta T. 

This essentially means that this is the enthalpy, total enthalpy of the reactants. 1 mole of 

fuel combines with r st moles of oxygen therefore, this is the enthalpy of the reactants 

and this is the enthalpy of the products. So, the reactant enthalpy minus product enthalpy 

as you know, is the heat of the combustion and therefore, you will get omega fu del h c 

plus C p m into T minus T ref, where delta T is written as T minus T ref; again, as I have 

said there. 

So, we get a, enthalpy equal to heat of combustion into omega fuel now, I have here 

replaced omega o 2 and omega product in terms of omega fu but I could do it the other 

way. I can replace omega fu and omega o 2 in terms of omega product or I can replace 

omega fu and omega product in terms of omega 2 and I will get different expressions 

involving del h c which I will show you shortly. 
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But, now let us consider the right hand side which is minus d by dy of A sigma k m y k h 

k. So, here summation of k m double prime y k h k would be simply h naught fu C p fu 

delta T into this, is the expression for m y fu plus the same quantity for oxygen and the 

same quantity for product. 

Now, we make an important assumption which is always made for gaseous mixtures. 

Specific heats are functions of temperature and for different species they are somewhat 

different; but they are not so different that we cannot make an assumption of equal 

specific heats. If you assume that the each specie has the same specific heat then it would 

simply equal in the mixture specific heats. 

So, that is the assumption I am going to make and use the stoichiometric relation omega 

o 2 equal to r st fu omega fu and omega product equal to minus 1 minus r st omega fu. If 

I do that then this entire relationship can be written as minus del h c rho m D omega fu 

by dy, because C p m delta T into sigma k D d omega k by dy would because sigma 

omega k would simply add up to 1 and that is equal to 0. Also, from the previous slide 

we have shown that C p m dT by dy is equal to d h m by dy minus, remember? 
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So, if I take differential of this equation with respect to y then C p m into dT by dy would 

be d h m by dy into minus del h c into d omega fu by dy and that is what I have written 

here. Now, I have this expression and I have this expression which I am going to make 

use of in deriving the right hand side. 
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So, the right hand side can now be formed which is as you know is d by dy. I can now 

take everything on this side and you can see that I can transform this equation into A 

times N w h m into k m by C p m d h m by dy minus del h c d omega fu by dy. This is 

essentially the k d T dy term. This is the del h c rho m D d omega fu by dy which is the 

right hand side term. Then, if I again make the Lewis number equal to 1 assumption that 

is alpha m equal to D, then you will see that gamma m this k m by C p m can also be 

written as rho m into D and equal to gamma h. let us say So, then you will see that this 

term would get cancelled with that term and I would get A times N w h m gamma h into 

d h m by dy equal to 0 and again a conserved property relationship has been obtained 

from the energy equation. 

The solution would be again same as that for inert mass transfer with B h defined as h m 

infinity minus h m w h m w minus h m T and this is the g star m h. Again, you will see 

that in a simple chemical reaction we have got the same formula; both from mass transfer 

equation as well as from the energy equation. 
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So, as I said earlier that we can define our mixture in variety of ways for a simple 

chemical reaction, one is to say h fu is equal to C p m delta T omega fu del h c which is 

what I did earlier. h o 2 will then be equal to C p m delta T and h product will be C p m 

delta T, because of the equal specific heat. But, I can also associate del h c with oxygen 

in which case h fu will be C p m delta T h o 2 will be C p m delta T into omega 2 o 2 r st 

del h c and h product. Then, again you have h fu h o 2 and I can associate now with 

omega del h c with the product mass fraction. 

So, there are three ways in which you can do it for a liquid fuel burning in air. We often 

choose second type because we often know omega o 2 concentrations much better. Then 

h m will be omega k h k would be simply C p m into T minus T ref omega o 2 by r st del 

h c which is from these three relationships. If I now take for a moment that T ref is equal 

to T w which I do not know usually, then I will get for convenience, rather I am not 

knowing where T ref. If, I take T ref equal to T w then B h which was h m infinity minus 

h m w over h m w minus h m T would transform to C p m T infinity minus T w del h c 

omega o 2 infinity minus omega o 2 w divided by r st del h c into omega o 2 w by r st 

minus C p l T T minus T w, where of course omega o 2 T is 0 because, oxygen does not 

exist in the fuel and T T is known or knowable somehow. 
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If T w was already, the fuel surface was already at the boiling point T w by T bp, then of 

course, no oxygen would survive at the surface and therefore that would be 0 because the 

fuel concentration there would be 1. 

If T w is not equal to T bp then of course, omega o 2 and T w relations must be 

established iteratively by balancing B m and B h, where B h is given by this (Refer Slide 

Time:37:05). So, you assume at T w evaluate the B h value then evaluate the B m then 



evaluate the omega v w rather omega o 2 w and then again get the balance done in favor 

of till convergence is obtained. 
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Where B m is given by this relationship and you will see phi value now will be known in 

all states for example omega fu in the infinity state is 0. Whereas, omega o 2 is known so 

phi infinity is known in the T state omega fu will be 1 and omega o 2 will be 0 so phi T 

is known. omega w will depend on the temperature which will determine omega fu and 

the remaining will be omega o 2. 
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We can determine the relationships in that manner and carry out iterations. Now, I come 

to mass transfer with heat transfer and arbitrary chemical reaction. What do I mean by 

arbitrary chemical reaction? By arbitrary chemical reaction, is typically a curve in solids 

combustion? For example, let us say consider burning of a graphite C star is given by C 

star at very high temperature T w of the order of 1950 or much higher then, there are 

several reactions taking place. The first 4 reactions take place at the surface of the 

graphite C star half o 2 equal to CO whose equilibrium constant infinity C star CO 2 

would be 2 CO whose again K p is 4000 C star H 2 O equal to CO plus H 2 1230 and C 

star equal to 2 H 2 equal to CH 4 1 by 790. 

CO does generate a hydrogen and C H 4 would then burn in the gas phase. Of course, 

here the K p so low at 1950, there hardly any C H 4 would be formed and therefore, we 

can say that very small amounts of C H 4 will be present. CO would then react with 

oxygen to produce CO 2 which would then dissociate in this fashion. The CO 2 will be 

CO plus half O 2, giving you CO 2 and H 2 O would dissociate to give H 2 plus O 2. 

Again, the K p is very low and therefore the reverse reactions would be dominant you 

producing CO 2 and H 2 O. 

So, for such a complex mechanism it is best to conserve the elements we have. Elements, 

C H and O in this case; you can see elements are C H and O of course, nitrogen is not 



present in the fuel and therefore we write this and as you recall, the element mass 

fraction equation is always a conserved property equation. 
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So let the infinity state comprise of CO 2 H 2 O and N 2 only that is the full products that 

so, the noting the equilibrium constant K p for each reaction it can be shown that in the 

considered phase, CH 4 cannot survive in appreciable magnitudes. Hence, it will 

comprise, the considered phase will essentially comprise of CO 2 H 2 CO and H 2 O 

only. 

Similarly, in the w-state only CO and H 2 will survive and therefore since species change 

in different states it is best to define a eta C equal to omega C star over 12 by 44 omega 

CO 2 then eta H would be given by that and eta O it will be given by that composition. 
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Thus we have 3 equations for eta C eta H and eta O. So, instead of solving 3 equations 

any 1 can be solved; but you will find that not all these quantities on the right hand side 

are very well known in the three states. 
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So, the best thing is to derive a composite quantity which we shall take as eta C minus 3 

by 4 n o and from this, these relationship you will see that I can form a nu variable 

omega C minus 3 by 11 omega CO 2 minus 2 by 3 omega H 2 O. Now, I can definitely 

form phi w equal to n c minus 3 by n o w equal to 0 in the w state in the T state only eta 

C will be 1 or omega C will be 1. All these are zeros, so they have put to 0. And in the 

infinity state, I do not have any carbon but there is omega CO 2 and omega H 2 O so 

they are retained and as a result I will get N w equal to ln 1 plus B m, where B m would 

be 3 by 11 CO 2 infinity plus 2 by 3 omega H 2 O infinity. 
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Both these are known in the infinity state, because that is what we said that we know. 

only the product in the infinity state. So, and therefore, I can calculate the mass transfer 

rate of graphite burning simply by knowing CO 2 at in the infinity state and omega H 2 

O in infinity state. 
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So in this case, because I know the relationship connecting element mass fractions with 

the species mass fractions, I am able to create a composite phi as eta C minus 3 by 4; 

simply by observation, this and this manipulation is simply by observation. 

Such that I do not want any of the things, any specie on the right hand side whose 

concentration I would not know in the infinity w and T states and this is what I have 

been able to achieve; so that the calculation of mass transfer becomes easy. 
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So, in some way I would say that we have analyzed all types of mass transfer problems 

from the by converting every problem to a conserved property equation and psi has to be 

defined appropriately, so that N w equal to g B with g by g star equal to ln 1 plus B by B 

and B is equal to psi infinity minus psi w over psi w minus psi T and A is 4 pi r square or 

a constant. 

For inert mass transfer without heat transfer, psi was equal to omega v, as you know, and 

gamma was simply equal to rho m D. For inert mass transfer with heat transfer, we had 

psi equal to omega v and h m and we made the assumption of Lewis number equal to 1. 

from mass transfer with heat transfer and chemical reaction we choose psi equal to 

appropriate phi and mixture enthalpy. We make the Lewis number equal to 1 - 

assumption and also we say that the specific heats of participating species would be 

equal to specific heat of mixture and in the mass transfer with arbitrary chemical 

reaction, we showed that psi can be simply appropriate phi and gamma m as rho m 

diffusivity. 

So you can see that a variety of problems have been reduced to conserve property 

relationship through appropriate and justifiable assumption which makes calculation of 

the mass transfer rate simple and we are able to derive analytically derived relationship 

connecting N w, the mass transfer to the driving force B and the relationship we have 



found is a logarithmic one. In the next lecture, we will see how, what the Couette flow 

model has to say. 


