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In the previous lecture, we saw how the law of the wall for velocity that is U plus can be 

used to evaluate friction coefficient C f x, for both external boundary layers as well as for 

pipe flows irrespective of the pressure gradient and also the effect of surface velocity b w 

or the surface roughness. In all those cases, we were able to obtain coefficient of friction 

as a function of the Reynolds number - the local value of Reynolds number. 

Today, we are going to look at how the temperature law of the wall can be used to 

predict the Stanton number in external boundary layers and Nusselt number in internal 

flows. Again, most of these methods are essentially analogy methods that is, in similar 

between heat transfer and momentum transfer is one way or the other assumed. We 

would be able to predict the variations of Stanton number and Nusselt number as 

functions of Reynolds number as well as the Prandtl number. 

 



So, I would first deal with external boundary layers in four different ways; one is use of 

the law of wall for situations in which there is no suction or blowing; I would also use 

analogy methods. Then, I will show you how to apply integral methods that is, the 

solution of the integral energy equation to take care of effects of pressure gradients wall 

temperature variations. Finally, we will extend the method to take care of the effects of 

roughness and suction and blowing. Likewise, we would look at prediction of Nusselt 

number in pipe flows - internal flows - and again make use of the law of the wall as well 

as the analogy methods. 
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So, let us start with the external boundary layer case and from lecture 28, you will recall 

that the temperature law of the wall is written as T plus equal to Prandtl U plus plus PF 

which is a function of U plus but, if we write that equation in the infinity state, we would 

get that T infinity plus equal to Prandtl T into U infinity plus plus PF infinity which as 

you recall is a function of Prandtl number only. 

U infinity plus here, would be simply U infinity by u tau which is U infinity under root 

tau wall by rho or it can be written as under root rho U infinity square divided by tau 

wall, which is nothing but under root 2 by C f x. T infinity plus - as you will recall - is 

defined as minus T infinity minus T wall divided by q wall by rho C p u tau. 



So, if I divide and multiply this by U infinity and note that q wall divided by T wall 

minus T infinity is h x - the heat transfer coefficient, then you can see that, this part is 1 

over Stanton number and u tau over U infinity is nothing but under root C f x by 2. As a 

result, this equation simply transforms to Stanton x equal to C f x by 2 square root into 

Prandtl T into under root 2 by C f x plus PF infinity. 

As you will recall, I said the turbulent Prandtl number is approximately 0.9 - some 

people take it 0.85 - but still one can make Prandtl T also a function of Prandtl number 

itself, as I indicated what the possible correlation could be. For Prandtl number 1, you 

would recall PF infinity is 0; so that is 0, for Prandtl number equal to 1. Reynolds 

actually use Prandtl T equal to 1 and hence, you will see the Stanton x would simply be 

C f x by 2, which implies perfect analogy between heat transfer and momentum transfer. 

From experiments for near unity Prandtl number, Stanton x correlates as C f x by 2 into 

Prandtl raise to minus 0.4 and hence for 0, the pressure gradient boundary layer Stanton 

x is equal to 0.0286 Reynolds x to the power of minus 0.2 Prandtl to the power of minus 

0.4. This was the correlation you use routinely in your under graduate work and we have 

shown that it can be derived from this equation - the temperature law of the wall. Of 

course, if you had a rough surface then, one must evaluate C f x for a rough surface and 

PF infinity also to be used for a rough surface, so as to get Stanton number for a rough 

surface. 

In all this evaluation you can see that C f x must be evaluated from the methods of the 

previous lecture. So, whatever the pressure gradient or v w or whatever is present, you 

simply use that to evaluate C f x and straight away use that to evaluate Stanton x from 

that, this is the simplest way to evaluate Stanton number. 
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Then, we can also apply somewhat more rigorously analogy method, in which we call 

that the effective Prandtl number is essentially, dT plus by du plus which we can write as 

dT plus by dy plus multiplied by du plus by dy plus then, sorry, this should be raised to 

dy plus by du plus it should be not du plus by dy plus dy plus by du plus. 

Hence, using the relation tau tot divided by tau wall is approximately equal to 1 equal to 

1 plus nu t by nu du plus by dy plus. You will recall we had derived this equation - gives 

dT plus by dy plus equal to 1 plus nu t by nu du plus by dy plus Prandtl raise to minus 1 

plus nu t by nu into Prandtl T or simply 1 over Prandtl number into 1 over du plus by dy 

plus minus 1 1 over Prandtl T raise to minus 1. 

Integrating from y equal to 0 to infinity and using the 3-layer law for u plus and hence 

for du plus by dy plus, it follows that. Now, if du plus by dy plus for the laminar sub 

layer is equal to 1 then of course, that quantity vanishes and I simply get T age of the sub 

layer plus minus 0 equal to Prandtl y sl plus equal to Prandtl u sl plus and as you know, u 

sl plus and y sl plus are 5; therefore, you get T sl plus is equal to 5 Prandtl. 

Extend the integration further from sub layer to transitional layer, so T transitional layer 

plus minus T sl plus. Here, du plus by dy plus would become one over kappa y plus 

where kappa is 0.2 and therefore, that will become 5; so 5 Prandtl T ln 1 plus 5 Prandtl 



by Prandtl T and here, I use transitional layer as y plus for transitional as 30 then, you get 

that relationship. 

Then, from the age of the transitional layer till the age of the boundary layer you will get 

T infinity plus minus T transitional layer plus again du plus by dy plus will be 1 over 

kappa y plus and therefore, where kappa is 0.4, then you will get that relationship that 

involving delta plus the boundary layer thickness. 
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Essentially, we got layer by layer contributions to T infinity plus. If I add these three 

equations - as I show on the next slide - and rearrange if I add these things then you will 

see T sl plus here gets cancelled with that and this gets cancelled with that, I would get a 

relationship for T infinity plus which as you recall from the previous slide T infinity plus 

is nothing but C f x by 2 by Stanton. 
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Then, I get C f x by 2 divided by Stanton x equal to 5 Prandtl plus all this; this is the 

transitional layer contribution, this is the laminar sub layer contribution and this is the 

fully turbulent layer contribution. Now, how do we evaluate delta plus here? Well as you 

recall, in the outer layers delta power law very well applies here. So, instead of 

logarithmic law if we apply power law then simply delta plus is equal to U infinity plus 

divided by 8.75 raise to 7 or that is equal to this quantity. 

The C f x is evaluated by integral methods of equation of lecture 29, so you substitute 

delta plus here as C f x and C f x that appears here. Here are both first evaluated from 

lecture 29 for a given situation and that gives you the variation of Stanton number as a 

function of Reynolds number and Prandtl number. 
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Now, when U infinity and T w minus T infinity vary arbitrarily with x then, one must 

invoke the integral energy equation which reads as 1 over U infinity into T w minus T 

infinity d by dx delta 2 U infinity T w minus T infinity equal to Stanton x, so you recall 

this integral energy equation when v w is 0. 

For further analysis, let Stanton x be equal to C Reynolds x to the power of minus n. 

Now, this method is often called the Ambroke’s methods; Ambroke was a soviet 

scientist and he published a paper on this. For the moment, we will simply assume that 

the Stanton x will vary as C times Reynolds x to the power of minus n and that is 

substituted here. 

Then, for constant U infinity and T w minus T infinity boundary layer, that is let us say 

flat plate, it will simply mean d delta 2 by dx equal to Stanton x equal to C U infinity x 

by nu raise to minus n. If we integrate that I will get delta 2 equal to C over 1 minus n U 

infinity by nu raise to minus n x raise to 1 minus n. 

If I use the idea that delta 2 is 0 at x equal to 0 that is, right at the leading edge then, 

Stanton x would simply become the function of delta 2 raise to n over n minus 1. Now, 

this is a very important relationship because we will be subsequently using this 

relationship for a variety of situations. 
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So, we assume the validity of the last relationship regardless of the previous history of 

the boundary layer. Then, the integral energy equation becomes d delta 2 U infinity T w 

minus T infinity of d by dx and then, that is equal to U infinity T w minus T infinity C 1 

minus n by C U infinity delta 2 by nu n over n minus 1. If we were to integrate this 

equation you will get C nu raise to n 1 minus n U infinity T w minus T infinity 0 to x u 

infinity T w minus T infinity 1 over that. 
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In effect then, I can calculate delta 2 for any arbitrary variation of U infinity and T w 

minus T infinity with respect to x. If I use the previous Stanton x delta 2 relationship of 

this type then, you can see I can get Stanton x equal to C nu n T w minus T infinity raise 

to n over n minus 1 divided by this integral and this essentially allows you to calculate 

Stanton x for any arbitrary variation of free stream velocity and wall temperature. 
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Now, assuming the flat plate data for C equal to 0.0284 Prandtl raised to minus 0.4 and n 

equal to 0.2, you will recall - I showed this to be the case in the first slide here - that 

Stanton x can be written as point 0.286 Reynolds x to the power of this. Essentially, if I 

say C is equal to 0.0286 Prandtl raise to minus 0.4 and n equal to 0.2 then, that is what I 

have done here. 
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Then, I would get a relationship for Stanton x equal to this quantity and you will recall 

that U infinity is actually the pressure gradient although these constants are strictly valid 



only for flat plate but, this Stanton number expression has used the same value of C and 

n and you get this relationship for Stanton x. 

Now, Crawford and Kays have actually experimented with constant wall temperature 

boundary layers in which the free stream varies arbitrarily that means, only free stream 

varies arbitrarily not T w minus T infinity and their experimental data fit this correlation 

very well; this is the pressure gradient parameter nu infinity square dU infinity by dx is 

the pressure gradient parameter less than 10 raise to plus 6. 

The Stanton number evaluated from this relation this integration and that evaluated from 

this agrees extremely well and therefore, we can say that use of C and n in this manner 

appears to be quite valid even for situations in which U infinity is not constant or T w is 

not constant. So with this experience, we now move forward and look at situations in 

which there is suction and blowing. 
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Now, again for a flat plate and T w minus T infinity constant Crawford and Kays show 

that for finite v w Stanton x, when v w is finite divided by Stanton x, when v w equal to 

0 can be written as ln 1 plus B h by B h. B h is nothing but our blowing parameter but 

this time based on Stanton x. 

We shall derive this relationship later on when we consider mass transfer problem in 

which the suction and blowing would be viewed as a problem of mass transfer and the B 



h is defined in this fashion and Stanton x v w then and substituting for Stanton v w equal 

to 0 which is 0.0284 Prandtl minus 0.4 Reynolds x to the power become into ln 1 plus B 

h by B h that is what it become. 

The energy equation for a flat plate where U infinity is constant and T w minus T infinity 

equal to constant; energy equation will simply be d delta 2 by dx Stanton x v w plus v w 

by U infinity but, if I substitute for v w by U infinity is equal to B h into Stanton x v w 

then, you will see it simply becomes 1 plus B h or the total expression then can be 

written in this fashion Reynolds x to the power of minus. There is ln 1 plus B h 

multiplied by 1 plus B h divided by B h Reynolds x to the power of minus 0.2. 
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Now, if B h was constant then the entire term here inside the bracket would be constant 

and it is not very difficult to integrate this equation using delta 2 equal to 0 at x equal to 

0, integration gives Re x to the power of minus 0.2 equal to this relationship multiplied 

by Re delta 2 raise to minus 0.25 or using again the Stanton x Reynolds Re x relationship 

of the previous slide here. 

The solution can be written as Stanton x for a finite v w a is written as 0.0125 Prandtl 

raise to minus 0.5 Reynolds delta 2 raise to minus 0.25 1 plus B h raise to 0.25 and then, 

this factor raise to 1.25. 



Of course, this integration was made possible by assuming B h equal to constant. Like in 

the previous case, we shall assume the validity of this relationship between Stanton x and 

delta 2 even when B h U infinity and T w minus T infinity vary arbitrarily with x, so that 

is what I have done next slide. 
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So, for this case the integral energy equation we will read in this, like this into all this 

quantity into that. Then, if we were to integrate as in the previous case, you get Stanton x 

will be equal to 0.0284 Prandtl raise to minus 0.4 then, B h now varies with x so that is 

included and you can see that I can perform this integration for any arbitrary variation of 

U infinity T w minus T infinity and B h, so that I can get variation of Stanton x. 

Crawford and Kays shown remarkably good fit to experimental data and predictions 

using mixing length; so they had a situation in which highly accelerated boundary layer 

were considered with v w present and it was changing arbitrarily. Therefore, the problem 

was solved by mixing length model and predictions were obtained; experimental data 

were available for the same case. Then, this approximate expression derived from 

Ambroke’s procedure was used and very good agreement was shown between 

experimental data and the correlation as well as predictions using mixing length. 
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So with this, I end the methods in which law of the wall is used or integral energy 

equation is used. Now, I turn to the more differential equation based methods; it so 

happens that you can use similarity type methods for turbulent boundary layers as well. 

The governing equation for the temperature boundary layer would read as u dT by dx v 

dT by dy equal to plus nu d by dy b Prandtl dT by dy where b Prandtl is alpha by nu and 

alpha t by nu which is Prandtl raise to minus 1 plus Prandtl T raise to minus 1 into nu t 

plus and nu t plus as you will remember is nothing but nu t by nu and nu t would be 

given by Prandtls mixing length as a function of y the distance from the wall. 

So in lecture 29, I introduced the similarity variables to be used for turbulent boundary 

layers. If we use the same similarity variables then, the equation for turbulent heat 

transfer boundary layer would be given by this d by d eta into b Prandtl into theta prime 

plus f theta prime plus 2n over m plus 1 f dash 1 minus theta equal to - again a function 

of x on the right hand side. This was also found in case of momentum equation that you 

do get things on the right hand side which are functions of x, where the things on the left 

hand side are essentially functions of eta. 

Here, m is the pressure gradient parameter defined as x over U infinity dU infinity by dx; 

n is the parameter related to wall temperature variation, n would be 0 of course, if T w 

was constant and theta is defined as T w minus T over T w minus T infinity. 



Again, like in the velocity boundary layer case you need to of course, f f dash are 

available already from the velocity boundary layer solutions. Therefore, solutions for 

theta would be obtained by iterative method just in the manner in which the similarity 

solution for velocity was solved. The boundary conditions are of course, theta equal to 0 

at eta equal to 0 and theta infinity eta equal to infinity would be equal to 1. 

That completes discussion of the external boundary layers and the similarity method. 

You need to do is, at every x you solve the left hand side by shooting method; the right 

hand side is evaluated from values available at the one step before it, so that the right 

hand side can be formulated as the constant for that step. One simply solves the left hand 

side again by shooting method and using the intermediate solution for theta; the right 

hand side is evaluated again till convergence is obtained and we accept the solution at 

that position x and move to the next step. 
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Now, I move to the internal flows, we wish to use the wall-law for pipe flow. So, if I 

write the T plus equal to u Prandtl T into u plus plus PF infinity corresponding to central 

line then, T cl plus will be that and u cl plus - you will recall - is nothing but, u bar plus 

plus 1.5 by kappa plus PF infinity. 

So, T cl plus would get defined in this manner; T w minus actually, it will get defined as 

T w minus T cl divided by q w, but if I multiply and divide by T w minus T bulk then, 



you will see this gets T w minus T bulk over q wall; T w minus T cl over T w minus T 

bulk multiplied by rho C p and u tau that would be the definition of T cl plus. 

Now, I multiply by k and divide by k; I multiply by u bar and divide by u bar then, you 

will see this can be written as this, this nothing but 1 over h - the heat transfer coefficient 

- into k divided by diameter which I have divided by and again multiplied by. So, I get u 

bar D by alpha multiplied by u tau over u bar multiplied by T wall minus T cl divided by 

T wall minus T bulk. 

Now, k over h D is nothing but one over Nusselt number; u bar D by alpha is nothing but 

Peclet number or product of Reynolds number and Prandtl number. So, these two factors 

are nothing but, Reynolds Prandtl divided by Nusselt number; u tau over u bar would be 

simply under root f by 2 the friction factor for a pipe flow, multiplied by T wall minus T 

cl divided by T wall minus T bulk. 

Hence, equating T cl plus from this expression and from this expression that is, the law 

of the wall then, you will see I can write Nusselt number equal to Reynolds Prandtl under 

root f by 2 divided by Prandtl T into under root 2 by f plus 1.5 kappa plus PF infinity and 

this becomes T w minus T cl over T w minus T bulk. 

To use this relationship we would of course, need estimate of T w minus T central line 

divided by T w minus T bulk which we expect to be somewhat greater than one in a 

turbulent pipe flow because, remember the temperature profiles are very flat inside the 

core of the flow and there are sharp gradients of temperature near the wall and therefore, 

the ratio of T w minus T cl divided by T w minus T bulk would be slightly greater than 

1, that is what we shall show. 
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Now, many times quite analogous to what is power law for velocity you assume a 

validity of the power law even for temperature T minus T w divided by T central line 

minus T w equal to y by R will rise to 1 by 7 and which we said it would be equal to u 

over u cl. 

Then, using definition of T bulk which is simply integral 0 to r u t dr dr divided by 

integral u r dr. It is easy to show that T w minus T central line divided by T w minus T 

bulk would be about 6 by 5 which is close to 1, let us say, 1 to 1.2. Remember this 

relationship is not absolutely exact but, we can take it to be between 1 and 1 is a function 

of Reynolds number. You will notice that for higher Reynolds number you need to take 

this as 1 over 9 whereas, below 50000 it can be taken as 1 over 7. 
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As a result T w minus T cl over T w minus T bulk is actually a function of Reynolds 

number; this factor turns out to be function of Reynolds number. The higher the 

Reynolds number closer it gets to the value of 1. Likewise, U cl by u bar is 1.22 but that 

is to high an estimate but, nonetheless it can be taken to be approximately solved close to 

1. 

Then, you can substitute these values for u cl by u bar and I mean, mainly you want this 

value but, that evaluation of that value requires this value so that is why I have coated it. 



The most widely used correlation for pipe flow which is considered to be very accurate 

with the experimental data is 1 by Gnienlenski and it reads like this Nu equal to 

Reynolds minus 1000 Prandtl under root f by 2 into 2 by f plus 12.7 Prandtl raised to 2 

by 3 minus 1 and it is valid for gases to heavy oils 0.5 to 2000 and 2300 to 5 million 

Reynolds number. 

(Refer Slide Time: 29:27) 

 

Notice the similarity between the equation we have derived here, so instead of Reynolds 

the Gnienlenski correlation has Reynolds minus 1000 Prandtl number is still there under 

root f by 2 is very much, there Prandtl T is perhaps taken as 1 and then, there is a factor 

of 2 by f and remember this is 3.66 in our calculation and then, the PF infinity which we 

use from our correlation, but the Gnienlenski takes a Prandtl T equal to 1; he is also 

taking the ratio if it is like this, this to be nearly 1 and then this is the function of the 

Prandtl number. 
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This is most widely accepted correlation has a form which is very similar to what we 

derive it from the temperature law. 
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We can also apply analogy method for pipe flow, so for fully developed pipe flow for 

example, dp dx is equal to constant hence, the axial momentum equation and its 

consequences are that 1 over r dr tau tot by dr would be equal to minus dp by dx. 

Integration would give tau tot by tau wall equal to r by R which means, the total stress 

divided by the wall stress is a linear function of r by R. This we had shown from the 



experimental data in an earlier slide and replacing r equal to r minus y the capital radius 

minus y as a distance from the wall it will be 1 minus y over R. 
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So, tau tot is equal to rho times nu nu t du dr and that would become minus rho nu plus 

nu t du by dy. Therefore, 1 plus nu t by nu can be shown to be 1 minus y plus by R plus 

divided by du plus by dy plus. So, that is what I shall use to substitute in from slide 2 

here I would use that to substitute for du plus by dy plus and nu t by nu, sorry, I would 

use that to do this 1 over nu t by nu. 
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Then, you will see that dT plus by dy plus is equal to 1 minus y plus by R plus over 1 

over Prandtl number 1 minus y plus by R plus over du plus by dy plus minus 1 over 1 

plus 1 over Prandtl T raise to minus 1. 
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Now, we will evaluate du plus by dy plus for each of the three layers that this sub layer 

the transitional layer and the fully turbulent layer. This is what the integration gives you 

for 3-layer law, T sl plus minus 0 equal to that as before; this is also everything is as 

before for an external boundary layer. T cl plus minus T transitional layer would give 

you 2.5 Prandtl T ln R plus by 30 again for Prandtl greater than or equal to 1 but, also 

gases can be included which is very close to 1. If I add these three, I would get T sl plus 

before adding of course, T cl plus by definition is Reynolds Prandtl over Nu over this; 

we showed on the previous slide. 
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If I equate this equal to the summation of the three, I would get the expression for the 

Nusselt number where R plus is expressed as Re by 2 under root f by 2. Therefore, 

Nusselt number would become Re Prandtl f by 2 T wall minus T cl T wall minus T bulk 

divided by the entire quantity here. This will be the second expression we have got now 

for representing Nusselt number. 

Of course, you have been using quite routinely the Dittus Boelter Correlation for very 

simple as Nu equal to 0.023 Re raise to 0.8 and Prandtl raise to n, where n is equal to 0.4 

for heating case and n equal to 3 for cooling case. 

In chemical engineering literature most often the correlation due to Sliecher and Rouse is 

used. It says, Nusselt number is equal to 5 plus 0.015 Reynolds raise to a and Prandtl 

raise to b and this is valid for 0.1 to 10000. Reynolds number from 10000 to a million, a 

is made a function of Prandtl number and b is made again a function of Prandtl number, 

these are some of the experimental correlations which are routinely used. 

Now as I said, all our analysis is actually for Prandtl number greater than 1 but, for liquid 

metals Nusselt number is correlated in this fashion a plus b Re raise to 0.85 Prandtl raise 

to 0.93 and where a and b take these values. Remember, I said in my lectures when I 

introduced turbulent flow that Nusselt numbers do not respond to the boundary 

conditions like in laminar flow; Nusselt numbers in turbulent flow are relatively 



insensitive to whether it is a constant wall flux boundary condition or constant wall 

temperature. 

That argument applies only to gases and situations in which Prandtl number is much 

greater than 1. When you come to liquid metals, they develop character the thermal 

boundary layer thickness enters the transitional layer and also enters the inner part of the 

turbulent layer many time depends on the value of Prandtl number. In such situations, the 

boundary condition begins to influence events even in turbulent flow and that is what is 

shown here, the constants a and b should be modified as shown here, for q wall equal to 

constant and T wall equal to constant. So, what it shows is again the Nusselt number for 

constant wall heat flux will be greater than the Nusselt number for constant wall 

temperature a circumstance very similar to that found in laminar flows. 
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By taking temperature ratio as 1.1 and Prandtl T equal to 0.943, 887. You recall, I had 

given you the relationship that Prandtl T actually can be modeled as, Prandtl T equal to 

0.85 plus 0.0309 into Prandtl divided by Prandtl plus 1, sorry, this should be Prandtl 1 

divided by Prandtl. 

You will see that this relationship assumes for Prandtl greater than or equal to 1 will give 

you for example, at Prandtl equal to 1 this will simply make it about 0.06 and Prandtl T 

will be about 0.91 for Prandtl equal to 1 and for very large Prandtl numbers also it will 

be around 0.88 because this ratio would be 1. 

Imagine for liquid metals where Prandtl number is, let us say, of the order of 0.001 then, 

you will see this quantity becomes 1.01 divided by 0.001 or nearly 1000. Therefore, this 

will become almost equal to 31.0, so Prandtl T can be very large for very small Prandtl 

number that is liquid metal. 
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I am presently considering cases in which say from gases to organic liquids, so Prandtl 

0.5 to 5 and 25. I have calculated Prandtl T using the relationship that I just showed, so it 

is 0.943 for 0.5, Prandtl T equal to 0.887 for Prandtl equal to 5 and 0.882 for Prandtl 

equal to 25. The temperature ratio I have always taken as 1.1 in each of those cases then 

just see what happens. At Reynolds number 3000, Gnienlenski correlation predicts 8.13 

whereas, Dittus Boelter predicts 10.5, Schleicher and Rous produce 11.9 whereas, the 

analogy method produces 10.3; similarly, at 10000, 50000, 1 lakh and 1 million. 

Then, you will see that Gnienlenski and other correlation predict very well are 

comparable Nusselt number, but Dittus Boelter is way out as you can see, for a high 

Reynolds number Dittus Boelter relationship predicts much higher than that predicted by 

any of the other correlations for gasses. 

What about water? Something very similar, you will see that sufficiently higher 

Reynolds number say tenth this correlations are close to each other but again at higher 

Reynolds number Dittus Boelter under predicts the Nusselt number compared to other 

correlations; whereas, for gases it was over predicting and for water it is under predicting 

that trend continues even for organic liquids. 



So, for Prandtl greater than 1, apparently Dittus Boelter under predicts whereas, for 

Prandtl less than 1 it over predicts compared to the correlations that are well accepted - 

Gnienlenski in particular is very well accepted correlation. 
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From this relative comparisons, we say that the correlations for pipe flow can be applied 

to of course, a non-circular ducts by evaluating f, Reynolds and Nusselt number based on 

hydraulic diameter; this you have routinely done in your under graduate work. Of course, 

the theory to support this assumption requires solution of Reynolds stress equations, so 

that the secondary flow is predicted in the cross section by the Reynolds’s stress model 

that can actually explain why hydraulic diameter concept works for non-circular ducts. 

It is easy to use Dittus Boelter correlation, actually over predicts Nusselt number for 

Prandtl greater than 1 and under predicts for Prandtl greater than 1. For complete 

description of flow and heat transfer involving complex ducts, strong and changing strain 

rates due to body forces and it is best to use CFD techniques with two stress equation 

models. This completes our discussion on turbulent flow and heat transfer. Hence forth, I 

will begin with convective mass transfer. 


