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In the previous two lectures, we considered the formal aspect of turbulence and asked a 

question how turbulence sustains itself. We showed this process of sustenance through 

breakdown of varies. We explained this process in three ways; one was scale analysis, 

second was spectral analysis and the third was the vorticity dynamics. Now, we must 

turn to more predictive aspects, after all we wish to - we were able to compute or 

calculate friction factor and Nusselt numbers in turbulent flows. 
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So, I am going to turn today to regions of flow close to the wall. If one analyses 

experimentally, then one would find an inner layer, as well as an outer layer. There are 

some special features of this inner layer, which make it possible for us to determine the 



friction factor and Nusselt number. I will also ensure how Prandtl’s mixing length idea 

can be employed to predict velocity distribution in inner layer. 
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So, let us turn to the main postulates. So, in our formal aspect, we dealt with turbulent 

flows, whose structure is dominated by large eddies that is where the production takes 

place. The diffusive influence of viscosity was rather small, being confined only to carry 

out dissipation at the smallest scales. Near the wall, however, viscosity also plays its role 

in bringing about diffusion. What is the size of this inner layer? To begin with, let me 

say, approximately y divided by delta in a boundary layer would be of the order of 15 

percent. Likewise, y divided by radius, where y distance from the wall in a pipe flow 

would again be of the order of 15 percent. 

So, we are talking about a fairly narrow region close to the wall, about 15 percent; 

whereas, away from the wall, where diffusive influence of viscosity is very small, would 

be greater than 0.15. However, it is the inner region, which is of great importance to us; 

because, the greatest resistance to heat and mass transfer occurs close to the wall, where 

or in the region, in which, viscosity play this dominant role; that is where the fluid flow 

is sluggish. Therefore, likewise, the heat and mass transfer is also very sluggish. 

Therefore, we are very much interested in this inner region. 



Now, it is of course a very fortunate occurrence - quite an accident of nature, really; that 

the most significant characteristics of this inner region are almost universal. We are 

going to exploit this universality of the inner layer to predict friction factor Nusselt 

number. 
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So, let us ask a question what are the characteristics of this inner layer? This is the flow 

against a wall, this is the free stream velocity U infinity and this is the total boundary 

layer thickness delta, let us say. 

Then, the inner layer which as I said is about 15 percent of the total, itself comprises of 

three characteristic layers, as I shown here. The inner most layers is often called the 

viscous sub-layer, is almost laminar-like, because that is where the effect of viscosity is 

so great that all fluctuations are almost killed and you get essentially laminar flow. 

In reality, however, this layer is characterized by repeated but infrequent fluid burst. 

What happens is, the laminar sub layer here grows a little, becomes unstable and weak. 

At this point, lumps of fluid from the outer layer hit the inner viscous sub-layer and 

uproot fluid out into the outer layer again or the outer parts of the inner layer. This kind 

of fluid being flung out from the sub layer is quite visible, if you did flow visualization 

of a typical turbulent boundary layer. 



Then, this region is very intermittent. When I say it is intermittent, it is infrequent. So, 

for all practical purposes to begin with, we might say the region is almost like laminar 

layer. 

The next is the transitional layer, which we may likened to the inertial sub range that we 

identified during our formula aspects of turbulence; that is called the transitional layer. 

Now, here, at both turbulent fluctuations, as well as fluid viscosity, both are equally 

dominant. Then, there is the fully turbulent part of the inner layer, where essentially the 

flow is very much like fully turbulent flow. 

So, as I said, inner layer has three layers; laminar sub layer, transitional layer and the 

inner turbulent layer. The outer layer is definitely turbulent, so we will take up the outer 

layer towards the end of this lecture. But, presently we wish to concentrate on the inner 

layer, because in this part of the boundary layer that really offers significant rates 

resistances to heat transfer. It is also the region in which greater part of the temperature 

velocity and concentration gradients take place, whereas the outer part has more or less 

uniform profiles. So, it is the inner layer which is of great importance to us. 

Now, phenomenologically I may postulate that the velocity parallel to the wall u would 

be function; first of all of the fluid property - two properties being used; rho, the density 

and viscosity. Of course, u must vary with distance from the wall, therefore y is included. 

tau wall would determine the shear stress at the wall that is the velocity gradient at the 

wall. Because, tau wall is mu d dy at y equal to 0, therefore shear stress is also included 

here. Then, there are many other factors that are likely to influence the velocity profile in 

the inner layer. 

Now, what are those other factors? The other factors would be the boundary layer 

thickness; itself could well influence the nature of the velocity of the profile. The 

pressure gradient and it is variation in the x direction could also affect velocity 

distribution. If there is transpiration or mass transfer, then of course, v w will also 

influence the velocity distribution. Finally, in order to enhance the rate of heat transfer, 

particularly in gases, we often employ rough surfaces, so even the roughness height 

would influence the nature of the velocity profile in this. 
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Experimental evidence, however, shows that for a smooth, impermeable surface; smooth 

meaning roughness height is 0; impermeable means v w is 0; the inner layer is almost 

completely free of all other parameters. Now, this is very interesting that for v w equal to 

0, for a smooth surface, the other parameters play a very minor role. I will explain why it 

is so. 

So, for example, independence from delta suggests that no information travels from the 

outer parts to the inner regions. So, inner region is sort of insular region that is not really 

effected by what happens very far outside into the outer layers. Independence from dp dx 

suggest that the inner region is also independent of the history of the flow. Except that 

the shear stress variation along the wall, may influence a little bit the velocity profile, but 

the influence would be expected to be not so great, as far as the velocity profile is 

concerned. 

Structure of turbulence is thus presumed to be in local equilibrium; that is, the time scale 

of eddies in the inner layer are much smaller than the time taken by the mean flow to 

change its structure appreciably in response to dp dx. 

You may like to think about this. I often give the example of a city and a village. A city 

quickly response to what happens in distant places; for example, Bombay would get 

influenced by what happens in New York or London, but a village, say 100 kilometers 



outside Mumbai, would be hardly influenced by what happens in the world around. I am 

using an analogy, so that you might remember what we mean by insularity of the inner 

region and the slowness of the inner region. 

This assumption of local equilibrium is valid for adverse, as well as mildly favorable dp 

dx, but not when re-laminarisation is encountered at very high accelerated boundary 

layers. Of course, we are talking about here fairly moderate range of plus and minus 

pressure gradients. So, highly accelerated boundary layers, this pressure gradient 

parameter m nu by U infinity square dU infinity by dx would be greater than 3 into 10 

raise to minus 6. 

So, we are not talking about such highly accelerated boundary layer, we are talking about 

only those which are more frequently encountered, having moderate plus and minus 

pressure gradients. 
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We included viscosity and distance from the y, simply because, as I said, tau wall is 

equal to mu du dy, therefore, we must include mu and y. The density rho is included due 

to the importance of momentum transfer resulting from velocity fluctuations, in the 

transition and fully turbulent layers. 

As I said, there are bursts of fluid, which come in breakdown of the laminar sub layer 

and there is a burst of fluid coming out of the laminar sub layer. This requires 



momentum transfer from the outer layers to inner layer, of the inner layers. Therefore, 

density would definitely pay an important role. Therefore, we have included density. 

So, if I were to go back to these slides (Refer Slide Time: 04:08). So, we are essentially 

excluded all others and only we are going to concentrate on these four parameters, 

because they define more or less the equilibrium of the inner layer. So, if I were to carry 

out the dimensional analysis, I would find that rho u square divided by tau wall would be 

function of rho y square tau wall by mu square. 

Now, I define u tau equal to under root tau wall by rho; this is often called the friction 

velocity; square root of tau wall by row has the dimensions of velocity. I will define a 

dimensionless velocity u plus as u divided by u tau and y plus would be defined as y u 

tau divided by nu. You can see this is a kind of a Reynolds number, based on distance 

from the wall and the friction velocity - y plus. So, both u plus and y plus are 

dimensionless, so you will readily recognize that this is nothing but u plus square and 

this is nothing but y plus square or another way of saying is, u plus will be a function of 

y squares. At least, the phenomenology suggests that this relationship will be universal 

and it is often called the universal law of the wall. 

The exact forms of F y plus, we must now find out, what the form it will take in the three 

layers; that is, the laminar sub layer, the transitional layer and the fully turbulent layer of 

the inner turbulent layer. 
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So, let us go layer by layer. To do that you will recall that the RANS equations for actual 

momentum would look like this; these are the convection terms; this is the pressure 

gradient term; this is the total shear stress. There would be these terms, which would 

arise only which are necessary to be included, only when highly accelerated flows are 

considered. 

But, as I said, we are not going to consider, so those terms will be dropped. Also, very 

close to the wall, u is very very small in the inner layer, which is about 15 percent. u by 

du dx would be much much smaller than this quantity v du by dy. Therefore, this term 

can also be dropped; as a result what we will get is, d tau tot total divided by dy would be 

approximately equal to d p by d x plus rho v w du by dy. 
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Now, of course, v equals v w; this is the inner layer; v w is present only here; this is the 

turbulent layer, sorry; this is the transitional layer; this is the laminar sub layer. So, we 

say that u du by dx will be approximately 0 in these region. v du by dy would be 

approximately equal to v w du by dy, these are very very approximate in the sense that v 

w extends it effect in the inner 15 percent of the total boundary layer thickness. 

(Refer Slide Time: 16:36) 

 



If I make these assumptions, then you will see that I can non dimensionalize this. First of 

all I must integrate this, so tau tot would be d p d x into y plus rho v w into u and tau tot 

would be equal to tau wall at y equal to 0. 

So, in other words, this integration would result into tau tot divided by tau wall equal to 1 

plus y divided by tau wall d p by d x plus rho v w u divided by tau wall. Now, you can 

see, this is nothing but, this is tau wall divided by rho. Here, in the denominator, which is 

u tau square; so I can form a v w plus, which is v w over u tau. u over u tau will give me 

u plus, so this v plus u plus. 

I will define this term as p plus y plus, in which case, p plus would be defined in this 

fashion, nu divided by rho u tau cube dp by dx; v w plus would be v w by u tau; these are 

the definitions. 
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So, hold this in your mind that the ratio of shear stress - a total stress to the shear stress at 

the wall is 1 plus pressure gradient times y by tau wall and rho v w u by tau wall. So, in 

effect, this ratio is in fact influenced by the pressure gradient, as well as the effect of v w, 

as it should be. 
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So, now, let us look at layer by layer. To begin with, we shall assume that dp by dx and v 

w are both 0; that means, we are considering the case in which this is 0 and this is 0, so 

tau tot would be equal to tau wall throughout the inner layer; therefore, shear stress is a 

constant. Now, in the laminar sub layer, tau tot would be equal to tau wall equal to tau l 

and tau t - the turbulence stress would be 0. That would be equal to mu times du by dy at 

y equal to 0. 

So, integration of this would give me u into tau wall divided by mu times y plus constant, 

but u is equal to 0 at y equal to 0 and therefore, c is equal to 0; therefore, I get u equal to 

tau wall y by mu. If I multiply and divide this by rho, then you will see, I will get this tau 

wall divided by rho will become u tau square into y by nu. If I take 1 nu tau on this side, 

I will get u over u tau divided by u tau, which is y u tau by nu. In effect, this is u plus is 

equal to y plus in the laminar sub layer. In the laminar sub layer, u plus would be simply 

equal to y plus and that is what I shown here, so u plus is equal to y plus. 
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Now, when dp by dx is moderate, the equation for d tau tot by dy - now of course, v w is 

still 0 - shows there would be little bit of y dependence, there will be y dependence plus 

pressure gradient; that term is 0. 

So, tau tot by tau wall would actually be influenced little bit by distance from the wall 

and therefore, the second and third derivatives of u with respect to y will be nearly 0. 

Hence, if we expand this u plus y plus relationship in Taylor series, then about y equal to 

0 you will get u plus equal to y plus plus y plus 4 by 4 factorial d 2 u by dy plus 4 plus so 

on and so forth. 

Now, this equation shows that for small values of y plus u plus equal to y plus holds, 

which is the laminar sub layer, but at some critical distance away from the wall, u plus 

must abruptly depart from linearity. All right, so there is a way useful little deduction 

that we will carry over to the next transitional layer. 
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Now, in the transitional layer, there are no simple phenomenal logical arguments that one 

can give, because both viscous and turbulent stresses are equally important in the 

transitional layer. There is however a similarity between the inertial sub range of the 

energy spectrum and the transitional layer. In that if we said, if u dash is a representative 

velocity to fluctuation, then the viscous length scale would be nu by u dash, would be 

much much less than delta, as we already seen; if the turbulent Reynolds number, u dash 

delta by nu is high. 

A layer covering a range of values of y can therefore be imagined, in which the 

turbulence structure is independent of both delta - the large scale, as well as the viscous -

very very viscous length scale nu by u dash. This is how we characterize the inertial sub 

range, as being relatively uninfluenced by either the very large scale or very very viscous 

scales. 

How should du dy vary then, in this region? The du dy can only depend on u dash 

divided by y. If we for a moment say that u dash would be proportional to u tau, then du 

by dy would be proportional to u tau divided by y. 
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If I said that du by dy is proportional to u tau by y, then I will get, let us say du by dy 

equal to - I am going to now call kappa transition u tau by y and if I were to integrate 

this, I will get u equal to 1 over kappa transition u tau into ln of y plus a constant of 

integration, which is c transition. Before I do that in fact, I can say that if I make this du 

plus multiplied by u tau and make this dy plus multiplied by - because y plus is equal to 

u tau y by nu, so dy being changed to - that will become nu by u tau that will equal 1 

over kappa transition u tau divided by y nu by u tau. Then, you will see that this u tau 

gets cancel with this, this gets cancelled with that. I will have essentially du plus by dy 

plus equal to kappa transition 1 over y plus or I would get, u plus equal to 1 over kappa 

transition ln y plus plus a constant of integration C tr. 

If this is the law that applies to the transition layer, then it does indeed show that there is 

a clear departure from u plus equal to y plus, which was in the laminar sub layer; this is 

now in the transitional layer. 

We had anticipated that there would be some distance y plus at which this transition 

would take place sudden departure in the slope du plus dy plus, which was equal to 1, 

now becomes 1 over kappa transition, 1 over y plus. So, there is a sudden change in the 

velocity gradient and therefore, the velocity itself. 
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So, the expected departure from linearity in the u plus y plus law is already attained. 

Now, indecently this equation can also be recast as ln E transition y plus by K transition, 

where C transition would be ln E transition by K transition, which is simple. 
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Let us turn to the fully turbulent layer. Now, what we are looking for is the u plus equal 

to F y plus for the turbulent layer. Therefore, this will be 1 over tau du by dy equal to d F 

by dy plus into dy plus by dy or that would be equal to d F by dy plus into u tau by nu. 



Therefore, you see du by dy in the turbulent layer would be u tau square by nu d F by dy 

plus. 

Now, of course, in the fully turbulent layer, mu t is much much greater then mu. So, we 

do not expect nu to play any significant role in the fully turbulent part of the inner layer. 

Therefore, this expression must be independent of nu. Therefore, d F by dy plus must be 

proportional to nu divided by u tau y, so that dimensionally the two sides are correct, or 

this is nothing but proportional to 1 over y plus. 

Therefore, we get du plus by dy plus as being proportional to 1 over y plus, this again 

gives u plus equal to 1 over kappa ln y plus. Now, this will be plus for a constant of 

integration. 

So, the fully turbulent layer also suggests a logarithmic law, but the values of kappa and 

C may be different from those of the transitional layer. 
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Now, let us look at the experimental data, because, so far, we have put up 

phenomenological argument. So, let us look at the experimental data, in which, we look 

at this parameter, which is the pressure gradient parameter; delta 2 divided by U infinity 

d U infinity by d X. 



I am looking at three types of flows; one is the adverse pressure gradient boundary layer, 

K equal to minus 1.434 into 10 raise to minus 3; K equal to 0 is the 0 pressure gradient 

boundary layer, because U infinity would be constant; K equal to 1.44 into 10 raise to 

minus 3, which is the favorable pressure gradient; what does this show? The 

experimental data are circles, it show 0 pressure gradient boundary layer; squares, show 

favorable pressure gradient boundary layer; triangles, show adverse pressure boundary 

layer. 

Now, you can see right up to 5, 10, 30 or almost, let us say, up to about a 100, there is a 

complete collapse of all experimental data on u plus versus y plus - u plus versus y plus. 

u plus is a linear scale and y plus is a logarithmic scale. up to bar 100 you will see that 

there is a complete universality irrespective of the pressure gradient. The favorable 

pressure gradient boundary layer data begin to depart from - let us say somewhere 

around about 300. The 0 pressure gradient data seem to do quite well, even up to 

Reynolds number of - I mean y plus of almost 700. But, the adverse pressure gradient 

data seem to begin to depart at about 300. The favorable pressure gradient data seem to 

depart say at about 150 or so, from the universality. 

So, we can say, up to about 100, the velocity profile in these coordinates u plus versus y 

plus is almost universal. How does it fit? u plus equal to y plus, it seems is valid up to y 

plus less than or equal to 5, this is what we identify. This is y plus equal to 5 here, is 

identified as laminar sub layer. Then, there is a change in slope as you can see and that is 

the transitional layer up to about 30 that is given by 5 ln y plus minus 3.05. This implies 

that one over kappa transition is 5; therefore kappa transition must be 0.2. That region 

extends from y to about 30 that we identify as the transitional layer. u plus equal to 2.44 

ln y plus plus 5.4 seems to apply for y plus greater than 30 and that we would say as the 

turbulent layer. 

So, the main observations are for K equal to 0, 0 pressure gradient boundary layer. These 

laws apply up to y plus equal to 700. I have drawn these laws by the solid line that 

extend right till about 2000 - y plus up 2000. For favorable pressure gradient y plus of 

100 seems to be the upper limit of applicability, whereas again for adverse pressure 

gradient, it seems to be about 300 y plus of 300. For pipe flow, which is a very mildly 

favorable pressure gradient, which I have not shown here, in fact then experimental data 



show that again, like K equal to 0 case, experimental data for pipe flow would also fall 

on the universal laws, till about y plus of 700. 

But, it is safe, therefore to say that in general, irrespective of the pressure gradient that 

we would encounter, the region y plus less than 100 seems to be almost certainly 

universal - y plus less than 100 seems to be almost certainly universal. 

So, we have discovered that the inner layer in the absence of v w, but very moderate 

pressure gradients does actually have a reasonably universal structure. But, the moment 

you exceed y plus of 100, the outside pressure gradient effects - that is the other switch 

we had ignored begin to play their role. Velocity profiles do depart from this universal 

law that we have identified. 

The main changes occur only in the fully turbulent part of the inner layer. The laminar 

sub layer and the transitional layer are somehow completely insular; they are not affected 

by the pressure gradient at all. The inner smaller region of the inner layer is also up to 

about 100, is also universal, but beyond 100, the pressure gradient effect starts playing a 

constant of integrations role, all right. 
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So, what is this special about y plus of 100? Well, it either - I will show shortly, it 

corresponds to say about 10 to 15 percent of the boundary layer thickness. We can 

explain this from for a pipe flow. 



So, for example, in a pipe flow, f friction factor, which is tau wall divided by rho u bar 

square divided by 2 is 0.46 Reynolds raise to minus 0.2. So, if I take a Reynolds number 

of let us say 30000; then what am I saying? This relationship actually can be shown tau 

wall by rho is u tau squared divided by u bar square into 2 is equal to 0.046 into u bar 

into diameter divided by nu raise to minus 0.2. 

If I were to define here, 0.046 into 2 u bar by nu into Ru tau by nu into nu by u tau raise 

to minus 0.2. Then, you will see this is equal 0.046 into this nu bar gets cancelled with 

this nu bar, I have 2 times u bar by u tau into R plus raise to minus 0.2 or you will see 

therefore, this becomes 2 times - if I take this term on this side, then you will see, I get 2 

into u tau divided by u bar raise to 1.8 is equal to 0.046 into 2 raise to minus 0.2 into R 

plus raise to minus 0.2. All right, what is u bar by u tau? Well, this is the friction factor, 

the friction factor is actually equal to 2 times u tau square by u bar square and therefore, 

u tau by u bar is actually under root of f by 2. 

So, in other words, I get here 2 times f by 2 raise to 0.9 equal to 0.046 2 raise to 0.2 

minus 0.2 into R plus raise to minus 0.2. R plus raise to minus 0.2 would be equal to 2 

raise to 1.8 divided by 0.046 into f by 2 raise to 0.9. Therefore, if I take now Reynolds 

number of 30000, then I can get the value of f from our usual relationship and therefore, 

I can show that R plus will be about 811; that is what I have shown here. 

So, R plus would be about 811; that is at the axis of the pipe from the wall - R plus 

would be about 811, whereas in the inner layer where universality exists, y plus is about 

100. So, y plus by R plus is approximately 100 by 800 at Reynolds number of 30000. If 

the Reynolds number was bigger, then this could go up to 100 by 1000 even or 1200 or 

something like that. 

So, we are essentially talking about a region of the order of 12 percent, 15 percent 

region, which defines the inner layer, all right. 
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The constants, we have identified as I shown here. The constants of kappa transition will 

be 0.2, kappa for the turbulent layer from 2.44 would be 0.41 and C transition would be 

5.4. Of course, likewise, each transition and E of the turbulent layer will be 0.543 and 

9.512; this is just another way of writing these two. 

The three layer law is very nice, but, as we said, it has very sharp discontinuities. What 

we would really like, is to have, is continuous law of the wall. How do we do it? 
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So, we seek now a continuous law of the wall, rather than this three layered description - 

mathematical description. To do that what I am going to do is, allow for this bursting 

phenomenon, as well as effects of dp dx and v w. 

So, in analogy with stokes law, for laminar shear stress, tau l equal to mu du dy. We 

introduce a model due to Boussinesq, as tau t equal to minus rho u prime v prime equal 

to mu t du dy. Then, Prandtl suggested, in analogy with how laminar viscosity is defined, 

in rho times lm v dash equal to v dash was like lm into du by dy. Therefore, tau t 

becomes rho l m square du by dy du by dy, this as issues we considered in our formula 

aspects as well. Where, v dash is the fluctuation responsible for transverse momentum 

transfer and l m is the mean eddy size in the inner layer- sort of notional mean eddy size. 

Note that unlike mu turbulent viscosity, mu t is a property of the flow, whereas mu is 

actually the property of the fluid. So, that is the difference between mu and mu t - the 

turbulent viscosity. 
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Now, the second question is how mixing length l m varies. So, the transitional layer is 

characterized neither by delta nor by nu by v dash, so the only relevant scale is y. 

Therefore, Prandtl extended this argument to the entire region of the inner layer and 

proposed that l m would be kappa times y; some constant that is directly proportional to 

y in the inner part of the layer. 



Now, the experimental data for the measured, from velocity profiles of l m show this. 

This is y axis, l m divided by delta and this is y divided by delta, I am going from 0 to 1. 

Now, experimental data do show, except for this little damping, l m is in fact quite linear 

till about let us say 0.18 or 0.2, let us say this is what we call the inner layer, but, beyond 

that point, the l m begins to show lots of scatter. 

Now, we are considering here flows in adverse pressure gradient, favorable pressure 

gradient, 0 pressure gradient, as well as pipe flows, many other ducted flows and so on 

so forth. So, this seems to be quite peculiar about mixing length that it is nearly constant 

in inner layer. It is nearly linear in the inner layer, say about up to about 20 percent or 15 

percent and then it begins to show lots of scatter about a value of 0.09. 

Mind you, it is somewhat difficult to accurately measure l m in the outer layer, because 

du dy in this region is also very small you see and therefore, it becomes difficult to 

measure this value of l m very accurately. 

Now, indecently the boundary layers with different pressure gradients, as well as v w, as 

I said, I have been included for the 0.2 to 0.9 region. The values show a scatter about l m 

by delta equal to 0.09. 
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But, for y over delta less than 0.2, l m is nearly proportional to kappa - 0.41. Very close 

to the wall, l m is somewhat lower damped and then suggested by l m equal to kappa y. 



Van Driest suggested that this damping actually occurs due to the effects of fluctuations 

in the transitional layer and therefore, he said the l m of Prandtl should be modified by 

introducing a damping function - 1 minus exponential of minus y plus by A plus. 

Therefore, from the previous slide, mu t would therefore be equal to rho into kappa y 

squared 1 minus kappa exponential of y plus by A plus whole squared du by dy. 

Whereas, from experimental data, it is found that A plus equal to 26 for a smooth wall, 

will bring about the amount of damping required in line with what is observed in 

experiments. mu t of is 0 at the wall, because y is equal to 0 there and in regions where 

viscosity is influential that is y plus less than 30, l m is smaller than the Prandtl’s mixing 

length. 

The amplitude of fluctuations decreases, thus exponentially as y tends to 0; that is what 

we expect, when viscosity begins to play its role in dissipation. 
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So, in order to develop continuous law of the wall - tau tot by tau wall, which was shown 

earlier to be 1 plus p plus y plus and equal to v w plus u plus. Now, it can appear in this 

fashion, where this mu t expression has been used to define tau tot divided by tau wall 

and this is a long expression. 

However, if the stress ratio is assumed to be unity, then effects of p plus and v w plus can 

be absorbed in a suitably defined A plus. 



So, what we are saying is we are going to cheat on this equation. We will say, let p plus 

equal to 0 and v w plus v equal to 0, so that tau tot by tau wall be exactly equal to 1 and 

would be equal to that relationship. But, to account for effect of p plus and v w plus we 

would simply tune the value of A plus, here that is the damping constant. 

If you take tau tot by tau wall equal to 1, we obtain du plus by dy plus as a quadratic in 

du plus by dy plus. The solution is simply u plus equal to integral 0 to y plus du plus by 

dy plus into dy plus. The a here is given by that damping function. 
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So, you need numerical integration to predict u plus as a function of y plus and that is 

what I have done here. Experimental data from different boundary layers with different 

dp dx and v w are matched with predictions by tuning A plus in each case. Kays and 

Crawford have proposed A plus to be 25 divided by a into v w plus plus b into all this 

function plus 1. We will make use of this a plus later on in actual computations of 

friction factors Nusselt number. 

But, presently just see this; we do manage to predict the continuous law of the wall. 

Quite well predict the experimental data in favorable pressure gradient, adverse pressure 

gradient, as well as a in 0 pressure gradient boundary layers; up to 500 or 700 in 0 

pressure gradient, up to 100 in favorable pressure gradient and up to - about 200 or 250 

in adverse pressure gradient. 



Therefore, we can say that we have now found a method for calculating universality of 

the inner layer in a continuous manner. 
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This is very useful when we do friction factor and number. Now, of course, the outer 

layers do not have any universality, they are big, they are significantly influenced by the 

pressure gradient and other effects. But, nonetheless efforts have been made - short cut 

methods have been made to universalized outer layers in this fan. 

These are called the velocity defect law. u infinity minus u u tau equal to 1 minus cos y 

pi by delta. Therefore, the total velocity function is given by this A equal to 0.55 K equal 

to 0.4 and C equal to 0.51. 
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This of course applies only to 0 pressure gradient boundary layer, but not in general. 

There are other methods for outer layers, but I will not go into that at the moment. 
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So, in summary, I would say that we have shown that although the inner layer 

universality can be established for a wide variety of turbulent flows, outer layer 

similarity is difficult to establish. 



For complete description of the outer layers, we need to solve the RANS equations using 

turbulence models. The inner layer universality can be exploited in two ways. That is to 

derive approximate correlations for friction factor and Nusselt number, to specify wall 

boundary conditions at y plus equal to A plus when outer layers are computed by RANS 

equations. This achieves computational economy, but this is an aspect that the CFD 

analysis essentially worries about. 

Now, to prepare the ground for studying turbulence models, in the next lecture, we shall 

explore the likely interaction between inner and outer layers; thank you. 


