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In the previous lecture, we made two important observations: one was the characteristics 

of turbulent flow significantly different from those of laminar flow and secondly,  

turbulence once generated - say, inside a pipe - somehow sustained itself right through 

the length of the pipe; it does not die away which means that there must be some 

pumping action, which feeds turbulence continuously to sustain itself, while viscosity is 

trying to kill it. 
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This lecture is the first of two lectures which will try and explain how turbulence sustains 

itself. We will do this firstly by some order - some magnitude analysis - by looking at 

and deriving the turbulent kinetic energy equation. Then, we will do scale analysis in 



which we will introduce the idea of length and time scales of turbulent eddies through 

special and auto correlation coefficients. 

The first question that arises is that turbulent fluctuations are extremely random and 

sharp as I showed you in the previous slide. Could it be that these fluctuations actually 

split the fluid? For example, if I had a paper in my hand and if I stretch it, subjecting it to 

very random motion, it is likely that the paper will split. Will the fluid split? That is a 

question, because of the stretching and torturing by the vertices. Can the fluid actually 

split? The question can be answered by considering orders or magnitude. 

(Refer Slide Time: 02:49) 

 

First of all, in turbulent flows, scales of velocity fluctuations vary from as high as that of 

the mean flow - say, in air, it could be anywhere up to 1 meter per second - to very low 

scales that are governed by the presence of molecular viscosity. The associated length 

scales would vary from as high as the mean flow dimension - say, boundary layer 

thickness or radius of a pipe - to a very small fraction of these quantities; the scales are 

associated with the turbulence fluid. 

Let us ask ourselves what happens at the molecular level. For example, molecular 

velocity in air would be of the order of 50 meters per second, much greater than 1 meter 

per second. The mean-free-path-length would be of the order of 10 raised to minus 4 

millimeters of delta and r; delta and r would be of the order of 1 millimeter to, let us say, 



1 centimeter onwards. Velocity scales of a molecule are much greater than the mean flow 

velocity scales where the length scales are much smaller than the mean flow scales. 

Similarly, in turbulence, frequencies of fluctuations are of the order of 10 raised to 4, 

whereas the molecular frequencies are of the order of 5 billion; there is a vast difference 

between what happens at the molecular level and what happens in practical turbulence. 

You can see that this vast difference implies that the two must be completely 

uncorrelated. Turbulence behaves in its own way, molecules continue to behave in their 

own way, and therefore, we could safely assume that turbulence does not, in any way, 

destroy the basic characteristic of a fluid; the fluid will always remain as a continuum 

because of the presence of viscosity and no splits at the molecular level would occur. 

This is a very important observation about turbulence, to make progress with the theory 

of turbulence. 
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The numbers of the previous slides suggest that the fluid viscosity will continue to 

influence events in turbulent flow in two ways. Firstly, by causing diffusion of the 

transported property - it can be a momentum, it can be temperature, or mass structure or 

anything; so, turbulence will cause because of viscosity causing diffusion. Secondly, 

through dissipation of energy of the fluctuations to heat, since turbulent fluctuations are 

indeed killed by the action of viscosity; therefore, the fluid continuum is maintained. 



In other words, fluctuations are no longer allowed by viscosity to sustain themselves and 

they are simply killed by viscosity. Therefore, the molecular behavior remains 

completely unaffected by turbulence. 

Having made this observation that the continuum is maintained, we now turn to the main 

point that a mechanism must therefore exist that feeds energy from the mean motion to 

sustain turbulence, while viscosity kills turbulence. 

Study of this mechanism reveals that in vigorously turbulent flows, the diffusive role of 

viscosity is marginal - that is the first one. But the viscosity plays its principal role 

through energy dissipation - that is, the motions are killed and therefore, the kinetic 

energy is dissipated. 
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Now, this is in contrast to what occurs in laminar flow, where the diffusive influence 

dominates over the dissipative one unless the fluid viscosity was very high, as in oil 

flows. That is something we have already studied while considering laminar flows. 

In order to explain whatever I have said through the Navier-Stokes equations, the first 

thing to appreciate is that the Navier-Stokes equation is written for an instantaneous 

velocity, u cap, which is a valid description of turbulent flow. Because the continuum 

prevails, all derivatives can be resolved for the instantaneous velocities, and therefore, 

the equations are valid. So, this is a fundamental assumption on which we will proceed. 
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For example, I can develop an equation for instantaneous kinetic energy. This is the 

equation for u cap u cap i by 2 which essentially means u1 square plus u2 square plus u3 

square divided by 2 is the instantaneous kinetic energy. How do I derive then? Recall 

that the instantaneous momentum equation is D u cap i by D t equal to minus d p cap by 

d x i plus d tau j i cap d x j. If I multiply this equation by u cap i – that is, u cap i and u 

cap i – throughout, then you will notice that this will be rho times D u i u i cap divided 

by 2 by d t which is nothing but rho D E cap by D t.  This will equal minus u cap d p cap 

by d x i plus u i cap d tau j i cap by d x j.  Therefore, rho times D E cap by D t would be 

equal to minus p absorbing u inside by d x i plus p cap d u i d x i plus again observing 

this inside d by d x j of u i cap tau j i cap minus tau j i d u i d x j this is what it will be. 

But remember from continuity equation which also applies the instantaneous velocities 

this term will be 0 and that is why you get this equation, that is what I have written here 

D E by D t equal to d by d x i p by u i plus d by d x i of u j d u i d x j minus mu phi v, 

this is mu phi v the viscous dissipation term. 
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Essentially, what the equation says is the rate of change of instantaneous kinetic energy 

is the rate net rate of work done by pressure forces plus the net rate of work done by the 

stresses tau i j mu S i j; S i j is the strength rate d u i d x j plus d u j d x i minus viscous 

dissipation. 

So, turbulent energy increases because of these terms, which can be positive or negative 

does not matter, but when they are positive it increases but mu phi v by definition would 

being positive would always decrease instantaneous kinetic energy. So, viscosity plays 

the role of destroying instantaneous kinetic energy. 



(Refer Slide Time: 12:48) 

 

(Refer Slide Time: 12:52) 

 

I do the same thing now to derive mean kinetic energy equation, but in this case what I 

will do is I will begin by writing the RANS equations where D u i by D t equal to minus 

d p by d x i plus d by d x j of tau j i minus rho u i prime u j prime d x j plus the body 

forces, which I am presently in ignoring and these where the turbulence stresses. 

So, if I multiply this equation throughout by u i, I would get again an equation for u i 

square by two which is the mean kinetic energy equation; here is that equation. 
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Its looks very similar in many terms - this is the pressure work term, this is the work 

done by laminar stress, this is the work done by turbulence stress, and this would be the 

viscous dissipation due to mean velocity gradients and minus minus turbulent stress 

multiplied by d u i by d x j the mean velocity gradient. 

The equation essentially says - that the rate of change of mean kinetic energy E is equal 

to the rate of work done by pressure forces, rate of work done by viscous stresses, rate of 

work done by turbulence stresses; that is termed a minus the rate of energy dissipated by 

viscous action and minus this is the most important term f. 

That the rate of energy transferred to turbulence by mean motion d u i d x j; now why do 

I say - rate of energy transferred to turbulence? That you will appreciate from the next 

slide. 



(Refer Slide Time: 15:03) 

 

(Refer Slide Time: 15:06) 

 

Now, I want to derive an equation for the turbulent kinetic energy, which is u i dash u i 

dash time average divided by 2; this is the turbulent kinetic energy; it is derived by first 

time averaging the instantaneous kinetic energy equation; in other words this equation i 

time average each term then time averaging of this term would give me mean E plus 

turbulent e and so on and so forth and the equation would look as I have shown here 
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The equation would look like this - D rho D E e plus by D t plus d by d x j of u i rho u i 

prime u j prime plus d by d x j of rho u j u i prime u j prime u i prime with triple velocity 

correlation will appear equal to minus d p u i plus p dash u i dash plus d by d x j or tau i j 

i u i plus tau dash i u dash i minus tau i j d u i by d x j minus tau dash d u i dash by d x j, 

where turbulence stress tau dash i j. 
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Tau dash i j is mu times d u dash by d x j plus d u j dash by d x i, this is the turbulent 

kind of prime or the turbulence stress based on fluctuating velocity strength rates. 
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So, from this equation, which is time average form of the instantaneous kinetic energy 

equation, I now subtract the mean kinetic energy equation which I derived on the 

previous slide; I subtract this equation from this equation, then you will see that I would 

get an equation for row D e by d t equal to minus d by d x j u i j j dash p dash plus this 

plus minus rho u i j prime u j prime d u i d x j and then this term and this term. 
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Notice that the C term here in the turbulent kinetic energy equation has exactly the 

opposite sign of the f term, they are both identical terms. But in one case you have a 

negative sign here and this is the positive sign here you have the positive sign 
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In otherwords, what is a law of kinetic energy? It turns out to be gain of turbulent kinetic 

energy and what do these terms represent? Well that is what is shown on the left on the 

next slide. 
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Rate of change of turbulent kinetic energy A which is the left hand side equals the rate of 

convective diffusion of total fluctuating pressure by velocity fluctuations to go back, this 

is the term p dash plus rho u i squared by 2 is the total fluctuating pressure, this is the 



static pressure, this is the dynamic pressure, and therefore the total term represents total 

fluctuating pressure and its diffusion due to velocity u dash j 

plus the rate of energy transferred from mean motion to turbulence by turbulence stresses 

which is the term C plus by the turbulence stresses; it is the energy transferred to 

turbulence plus the rate of work done by viscous turbulent stresses this is the u j dash tau 

dash i j is and I explain what the definition of tau dash i j is, so that is the diffusion again 

of the stress tau or the stress work due to turbulent stress.  

And finally minus the rate of dissipation of energy by turbulent motion and that is the 

term E here is a product of fluctuating stress multiplied by fluctuating velocity gradient 

and therefore this would be very much like the mu phi v term in which the phi v would 

now, we form from fluctuating velocity gradients. 
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Equation for mean kinetic energy shows that E is lost in two ways- firstly by viscous 

dissipation- term e, the mean energy is lost by viscous dissipation and secondly, by work 

done by stresses on mean velocity gradients and E is lost in two ways firstly by viscous 

dissipation term e and secondly by term f which appears as a positive contributor to 

turbulent kinetic energy C a term C. 

Hence term C is called the production or generation term, because it makes a positive 

contribution to rate of change of E. In laminar flow, the mean energy is directly 



dissipated into heat. In turbulent flow we can say that mean energy is first transferred to 

sustain turbulence before it is finally dissipated to heat through term E. 

So, the first mean kinetic energy goes to turbulence through some C which increases 

that, but turbulent kinetic energy also decreases due to dissipation to heat before finally. 

So, this first and before seems to be there ishave a time lag or a space lag in a fluid flow 

whichever way we is to look at it; so it is not an instance process, it happens perhaps in 

stages. Now, to explain that we will have to make some further explorations into 

turbulence which I will take up in the slides to flow as well as the next lecture. 

So, remember mean energy is lost in two ways first by viscous dissipation and secondly 

by transferred to turbulence. 
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Turbulent kinetic energy on the other hand is sustained because of this transfer from 

mean energy from the mean energy and secondly it is destroyed by the fluctuating 

counter part of mu phi v which we called turbulent dissipation. 

So, beside dissipation, transfer mean kinetic energy and turbulent kinetic energy 

experience convective-diffusion of energy through terms b, c, d, B and D. These terms 

simply redistribute energy specially but make no contribution or zero contribution to 

integral energy balance as we would see now. 
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So, for example, consider let us say flow between two parallel plates with an access of 

symmetry and I shall now integrate- I will now consider the kinetic energy equation, so it 

will look like rho D e by D t equal to and assuming that the gradients of all terms are 

much bigger in y direction then they are in any other direction. 

We would write d by d y minus d by d y of v dash into p dash plus u dash square plus v 

dash square plus w dash square by 2, which is nothing but the kinetic energy. 

Minus or the plus minus rho u dash v dash into d u by d y plus d by d y of v dash into tau 

y x minus tau dash y x by d u dash d v dash by d y- let us say where tau dash y x is mu 

times d u dash by d y dash. 

So, now if I integrate this from 0 to i that is over the volume of the channel; then you will 

notice that this term will have v dash at the wall and v dash at the at the access symmetry 

and therefore both of them would simply vanish. 

So, integral of that d v is simply 0, integral of this term will survive, which we said was 

production term; this, like this term will also vanish integral whereas this term integral of 

d v will survive, because it is a product of velocity gradient and the fluctuating stress.  
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That is what I show here, so by wall and symmetry plane is considered, so if the 

turbulent energy is bounded by wall where the velocity fluctuations are 0 because of no 

slip or by wall and symmetry plane tau i j tau dash i j 0 is considered and equation for 

turbulent kinetic energy is integrated over the cross section. 

Then we would have D by D t e d v e equal to net production minus net dissipation, what 

this tells us this following? Is that the net change in kinetic energy over a cross section 

would be positive when net production exceeds net dissipation. 

On the other hand, if the net dissipation exceeded net production, then e will simply die 

out the kinetic energy will be simply vanish; when there is near equilibrium that is 

production is very close to dissipation we would have transition. 

The equation then sets the conditions for sustenance of turbulence, that the net 

production over a cross section must exceed the net dissipation then the turbulence 

would be sustained at every cross section downstream. 

There are situations in fact, where even in a channel flow, a turbulence when generated 

can be made to relaminarize, one such possibility is to have a tube which is coiling 

around a steam with very high turbulent velocity fluctuations, 



so that the dissipation term begins to dominate over the production term and the 

turbulent could then relaminarize inside a pipe, but it is a coiled pipe very very special 

case not routine encountered in practical engineering. 
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When the production and dissipation are near balance, you would expect a kind of flow 

in which for a while the flow is laminar when dissipation over takes production and then 

the laminar flow will become unstable to produce in which production term it will take 

over from dissipation and little patches of turbulence and little patches of laminar fluid 

would appear in a flow and that is precisely what we called the transitional regime. 

Thus, the turbulence derives this sustenance by drawing energy from the mean motions. 

Now, how does this transfer actually take place? That is what we want to ask, how does 

this transfer take place? 

Now, to understand that, we must introduce the ideas of scale; so in a laminar boundary 

layer, for example, it is characterized by two length scales: one is delta, which is much 

much smaller, the transverse dimension is much much smaller than the stream wise 

distance x and that gives us delta by x has being proportional to Reynolds x to the minus 

0.5 and this is usually much much smaller than one. 

So, the relevant time scale however is t equal to x divided by U infinity and therefore, if I 

substitute that in here I would say delta is proportional to nu t raise to minus 0.5, where 



nu is a small number. Therefore, delta would be a very very small quality again as shown 

earlier. 

More importantly, if you remember delta could be discovered only because of the 

inclusion of the transverse diffusion term mu d 2 u d y square in the laminar boundary 

layer equation. 

One way to interpret this fact is to say the smaller length scale delta is associated with 

the effect of viscosity as shown here. 
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What about turbulent flow? Now, in a turbulent flow- turbulent boundary layer very 

close to the wall of course you have viscosity dominates- viscosity affected region, but 

the outer parts are certainly almost independent of the effects of viscosity, the laminar 

fluid viscosity. 

So, in this region, if I were to say- what brings about transverse of momentum? Well, let 

us say- it is a representative velocity fluctuation V dash; mean, let us say- I call it V dash 

mean as the representative fluctuation which brings about transverse momentum. 
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Then, you will see in turbulent boundary layer, motions of several scales occur 

simultaneously and we are going to choose V dash mean as the representative velocity 

fluctuation in the direction of y away from the wall. 

Then, the transverse momentum is carried out by minus rho u dash V dash time average 

which would be much much greater than mu d u by d y and, d delta by d t, that is the rate 

of growth of turbulent boundary layer thickness would be proportional to V dash mean 

essentially and therefore delta would be proportional to V dash mean by t in multiplied 

by t but t as we observed would be x divided by U infinity even in a turbulent flow and 

therefore V dash x by U infinity, this would be V dash mean into x multiplied by (( )) 

Thus, the diffusion time scale, delta by V dash mean would be approximately equal to 

mean time scale x by U infinity; this is very interesting, the delta is a small length scale; 

V dash mean is the representative fluctuating velocity in the turbulent core or the fully 

turbulent path of the boundary layer 

and the time scale associated with it is exactly same as the mean time scale and therefore, 

we shall regard V dash mean as a representative of the large scale motion; this is a very 

important idea that V dash mean would be taken as the representative of the large scale 

motion. 
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Recall that the dissipation process, mu tau dash d u dash i by d x j- this was the 

dissipation process; this I will represent as a rho times epsilon, where epsilon is called 

the dissipation rate of kinetic energy. 

(Refer Slide Time: 33:37) 

 

Now, this actually kills turbulence- rho into epsilon actually kills turbulence and 

smoothens out velocity fluctuations due to action of viscosity and therefore, the length 

scales associated with it would be much much smaller than the mean length scales and 



the time scales associated with it will also be much much smaller than the mean time 

scales. 

At such very small scales of motion, turbulent fluctuations in all 3 dimensions- directions 

can be taken to be essentially statistically equal that is u prime square is equal to v prime 

square is equal to w prime square, 

as well as the gradients will be 0. In another word, the spatial variations will also be very 

small; when special variations of fluctuating a time average quantities are 0 or this when 

the spatial gradients of the fluctuating quantities time average fluctuating quantities are 

0, we say the structure is homogeneous and when the components of the velocity 

fluctuations are equal, we say it is isotropic and then therefore, we would essentially 

have where the viscosity plays its dominant role we would have essentially a 

homogeneous and isotropic turbulence structure. 

It is characterized in association with epsilon by what are called Kolmogorov scales; so 

Kolmogorov use the idea, that is very small scale motions are essentially characterized 

by the effect of viscosity and by the effect of a turbulent dissipation and he brought in the 

quantity epsilon to represent the velocity scales of the associated with dissipation process 

as new epsilon raise to 0.25- this is dimensionally correct. 

Similarly, the time scale t epsilon was taken as nu by epsilon raise to 0.5 and l by l sub 

epsilon was taken as nu cube by epsilon raise to 0.25 as the length scale. 

So, if I form Reynolds number based on length scale, velocity scale- I will get l v dash 

epsilon divided by nu and let us say- it is of the order of 1. 

Then it follows that it would be much much smaller then l V dash mean by nu, which is 

the large scale motion and large scale length scale and that would be of the order of 100 

or even more. 

The Reynolds number associated with dissipative length scales and velocity fluctuation 

scales is much much smaller than the mean Reynolds number form from mean length 

scale and fluctuating velocity scales, which would be of the order of 100 or more. 



Thus, we have provided relative estimates of the largest and the smallest scales; so 

largest scales belong to the mean dimensions, mean motion, where is the smallest one 

belonging to the dissipation scales. 
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The most important to cut the story short, the most important aspect of it is that 

whenever large scale fluctuations are presents small scale motions are automatically 

created so that viscosity can play its major role via energy dissipation. 

The creation of this small scale motions is believed to be cause by the non-linear 

convective terms in the Navier-Stokes equations. That this creation of smaller and 

smaller scales motion is not a one-step process but takes place in a large number of 

continuous steps will be demonstrated shortly- it can be done in more than one ways and 

I will try to do it in as simpler manner as possible. 

The large scale fluctuations thus creates smaller scale fluctuations, which in turn transfer 

their energy to produce even smaller scale fluctuations and so on till the scales are so 

small that non-linear terms become unimportant and viscosity takes over to produce an 

isotropic structure of turbulence I mean that is the story that is the story of sustains of 

turbulence. 
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Now, in order to explain these ideas little further, it is customary to introduce the idea of 

a turbulence eddy; now you can imagine that- let us say I have 2 points in the flow and I 

consider- let us say, u dash here and v dash here at the same time t or let us say to begin 

with u dash and u dash itself, I consider the fluctuation in the x direction at the same time 

instant at two different points separated by a distance. 

Now, we all know that if I a fluctuation at this point will influence this point if they were 

close to each other, so the fluctuation here would be influenced by fluctuation here. 



However if this point was sufficiently for away, say here, then the u dash here will not be 

not influence by u dash at x equal to 0- let us say this is at x equal to 0 and this is the 

separation distance x 1 and this is definition distance x 2 let us say. 

So, at this point, it is unlikely that u dash will sense what u dash at x equal to 0 is doing; 

in effect if I have to look at them in time at x equal to 0 then the fluctuations u dash 

would at x equal to 0 will look like that. 

At x equal to x 2 let us say, they would look absolutely different and you can say that 

this form of u dash at x equal to 0 which is completely uncorrelated with what is 

happening at large distance. 

What about intermediate distances? Here we can expect supposing x 1, which is very 

close to x equal to 0- I can explain something like that; marginally, good correlation at 

least it will look somewhat similar, but at very large distance it could be absolutely very 

very different,  

I can say therefore and of course if I took this second point to merge with this, of course 

I will reproduce the same pattern, which means a complete correlation exist between the 

two points when they collapse on one another; a complete correlation exist when they are 

very very far, but a moderate correlation can exist for in between distances 

and of course we do not know what that distance x 2 will be in real turbulent flow and 

that is what we wish to find out; this is spatial influence. but now if I take for example, u 

dash at time t and u dash at say another time t equal to t plus delta t separated by a 

distance delta t time distant delta t then a similar situation will arise. 
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If delta t was small- I would expect reasonably good correlation between the two; but if 

it was very very large, then of course they would be completely uncorrelated. 

These ideas are expressed here in this figure, where I show two points u dash 1 and u 

dash 1 at two point separated in x 1 direction and is define a spatial correlation 

coefficient as B i j under root B i i under root B i B j j, where B i j is the u i prime u j 

prime at two different points but at the same time instant. 

I do the same thing here for u 2 dash and u 2 dash separated in x 1 direction and then if I 

plot R i j from measurements of these quantities, then it would be it will look like perfect 

correlation of 1 at separation distance equal to 0 and the correlation would die out 0, that 

means there is no correlation beyond some long distance. 

Similar thing would happen with respect to u 2 dash at the same time all though it will go 

through a negative before going to 0 at infinity, this is called the longitudinal time scale 

ah correlation;this is called the transverse correlation. 

And for example, if I were to integrate this over a long time of infinity, then this would 

give me a length dimension which would be representative the average dimension over 

which a fluctuation at a point is going to influensive hence. 



That I would call as the integral length scale of the fluctuation or the spatial size of the 

eddy in longitudinal direction- I can do the same thing for with respect to u 2 velocity 

and I would get a similar dimension in the transverse direction I can say; so I have 

estimated the size of the eddy physical size of or the zone over which turbulence is going 

to influensive hence. 
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Spatial correlation has nine components, R i j as defined has nine components in general 

and being a coefficient it would vary between minus 1 and plus 1. At these two extremes, 

we say the correlation is perfect, absolutely perfect because is magnitude is 1. 

When R i j is equal to 0, of course no correlation exist between u i dash and u j dash 

which would understandably be the case when the separation distances r tends to infinity; 

between 0 and 1 we say the correlation is moderate. 

It is steadiest to measure R i j in a real non homogenous isotropic turbulent flow, because 

nine components must be measured in all directions for different values of separation 

distance r and the direction r 1 r 2 and r 3 and therefore usually only in the direction r 1 

or x 1 is the only direction which is taken to measure 

Whenever measured by enlarge correlation coefficients are extremely difficult to 

measure the spatial correlations are extremely difficult. 



I will stop here and continue with this lecture next class. 


