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In the next 8 to 9 lectures, I intend to cover the topic of turbulent flows. 

 (Refer Slide Time: 00:42) 

 

More often than not we encounter turbulent flows and heat transfer in turbulent flows is 

of great relevance to the heat transfer engineer. By way of an introduction, we must first 

understand what is so special about turbulent flows. Therefore, we would look at some 

important characteristics of turbulent flows and then understand why statistical averaging 

is absolutely essential to be able to track theoretically, the turbulent flow, which in turn 

would give us ability to predict the friction factor and the Nusselt number, just as we 

managed to do in laminar flows. 



(Refer Slide Time: 01:24) 

 

So, first of all let me start by saying that the phenomenon of turbulent is associated with 

high fluid velocities characterized principally by the Reynolds number. All of you will 

remember what the Reynolds number is; Reynolds number is equal to rho times velocity 

into some characteristic dimension l divided by the viscosity. 

Therefore, it represents the ratio of inertial forces - the numerator, and the viscous forces 

- the denominator. For the same temperature difference, if you had a turbulent flow 

instead of a laminar flow, you would get much higher rate of heat transfer. In other 

words, the heat transfer coefficient would be much greater in turbulent flow than in 

laminar flow. 

Now, why does that happen? We wish to find that out. The main thing to always keep in 

mind is the fact that the turbulent flow is always three dimensional and unsteady. 

Unsteady means time dependent. In fact, so time dependent and three dimensional that, 

turbulence is often described as random motion. 

The word random often gives the impression that it can never be made tractable. We will 

see how this randomness can be combated. Experimentally, the formal study of turbulent 

flow began with Reynolds’s celebrated pipe flow experiment, in which laminar flow at 

low velocities was turned into a flow with irregular fluid motion when the velocity was 



increased beyond a threshold value; all of you must have been introduced to this idea 

very well in your under graduate work. 

(Refer Slide Time: 03:37) 

 

Let us look at what Reynolds actually did. Reynolds had a tank and a tube. The tank was 

filled with water and he had a bell mouth entry to the tube so that the fluid would enter 

very smoothly into the tube from this tank. At the exit of the pipe, there was a valve. By 

opening and closing the valve, he could therefore control the rate of flow through this 

tube. What he also had was a dye injector at the center line; let us say ink. 

So, as long as the velocity was low, the dye would simply remain steady like a laminate 

and move straight out of the duct without any fluctuation or movement or anything like 

that - straight along the length. That is along the axis of the tube because the hypodermic 

needle through which he was injecting the dye was kept absolutely at the axis of the 

point.  

This happened till Reynolds number equal to rho times u bar the mean velocity into 

diameter D by mu was less than 2000 and you have laminar flow. When Reynolds 

number increased beyond 2000, he observed a strange phenomenon. Let me draw a 

second diagram in which the dye would come out like so and it would be almost laminar 

like, but then turn a little turbulent. Then turbulent would dye out and then would again 

turn into turbulent, and then again dye out and then again dye out and so on and so forth. 



So, in other words, he had a partly laminar partly turbulent or unsteady flow, locally over 

fixed times, he would get turbulent spots or turbulent patches if you like. This state of 

affairs would continue till say up to about 2400 Reynolds number or even 2500. But 

certainly when the Reynolds number was greater than 3000, he found that the entire tube 

would get engulfed by sinusoidal motion or what he calls sinusoidal motion, or really 

random turbulent vertical motion; the dye would completely mix out into the 

surrounding water and you had colored water coming out. 

In this range - let us say between 2000 and 2500 or even up to 2000 to 3000 is called the 

transitional Reynolds number or transition regime, and certainly greater than 3000, we 

would call it as turbulent flow. So, this was the first formal experimental evidence of 

turbulent flow, although in nature people have always observed turbulent flow. 

Then, the objective of the theory of turbulent flows is mainly to develop capability to 

predict friction factor and Nusselt number which is of relevance to engineering, but this 

randomness must somehow be combated. Only then can we make a sensible theory out 

of what Reynolds observed. 
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Now, if you look at turbulent literature, there is a great deal of literature which I will call 

as formal aspects of turbulence. It does not deal with prediction of friction factor and 

Nusselt number at all; instead it asks some very fundamental questions 



Questions like - how does laminar flow turn into turbulent motion? That would be of 

great interest. How does turbulence, once generated, sustain itself? This is a most 

relevant question as far as practical turbulent flows are concerned, after all if the 

Reynolds number was greater than 3000; let us say 10000 or so or 1 lakh or 1 million 

whatever. 

The flow becomes turbulent right from the entry to the tube and remains turbulent right 

to the exit from the tube. This has been evidenced in all practically encountered lengths 

of pipes of diameters. Whatever the diameter for all practical lengths of pipes, it has 

always been observed that a turbulent flow, once it is turbulent at entry, it always 

remains turbulent right through; that is along the length. 

In other words, turbulence somehow finds a way to sustain itself in spite of the friction at 

the wall and so on and so forth; infact, the friction at the wall could be the main 

contributor to sustenance of turbulence; so, we have to find that out. 

Third question would be - what are the most convenient methods for mathematical 

representations of the complexity of turbulent flows? How do you deal with 

randomness?  

There are many ways. Do you deal with it in physical space which gives rise to statistical 

methods? Or do you deal with it in wave number space, which means you think of 

spectral representation of randomness? 

Finally, once you have decided on either statistical or spectral, then you must understand 

two things: what do these mathematical representations, meaning each term in those 

equations really physically mean? What mechanisms do they represent? Can those 

mechanisms and the terms be independently measured in practical turbulent flows? What 

would be the difficulties of measuring such quantities? - These are all questions that are 

dealt with in the formal aspects of turbulence and this is a field in which right from 

physicist to mathematicians to engineers have contributed greatly. 

It has been the most inviting and intriguing topic in physical sciences. Engineers are 

more interested in predictive aspects. In other words, how to make the problem of 

predicting turbulent flow tractable, first of all? By this we mean how to bring the 



problem of prediction of turbulent flows in line with that of predicting laminar flows. 

After all, we know already how to predict laminar flows through our earlier lectures. 

Can turbulent flow be brought down to the same pattern as it were, so that friction factor 

and Nusselt number can be predicted? In order to do that, we would require generating 

universally valid equations governing the main variables characterizing turbulence, such 

that each of the convective diffusive and dissipative effects present in the turbulent flow 

are actually captured or accurately captured in each flow situation. That means we need 

equations governing turbulent motions that are as universal as they are in laminar flows; 

that is the first requirement. 

Once we have such equations, then we would say that from one situation to another 

situation, simply we subject the equation to different boundary conditions to obtain f and 

Nu characteristic for each situation. This would be just like predicting laminar flow then. 

Only thing is - the equations are different or they might even be similar; that we will 

discover as we go along. The problem of predicting then would be brought down to the 

same footing as problem of predicting laminar flow. 

Engineers are very eager to find equations from physicist and fundamental scientists who 

would give them universally valid equations of turbulent flows, which they can then 

readily apply, even if it was necessary to apply computer. They would do so and obtain 

solutions for friction factor and Nusselt number. 
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I will now take you through some features of turbulent flow which will help you to 

understand why we expect turbulent flow equations to have fundamentally different 

nature than the equations of laminar flow. 

Look at this first slide with which you are all familiar from your under graduate work. 

The left hand side shows the variation of friction factor versus Reynolds number in a 

pipe flow and the right figure shows the variation of Nusselt number with Reynolds 

number. 

Now, you will recall that the friction factor multiplied by Reynolds number is always a 

constant equal to 16 in a pipe flow. Therefore, on a log-log scale, it will look like a linear 

line till about Reynolds number of 2000. Now, the laminar flow equations do not know 

that the flow will turn turbulent or will change its character towards transition and then to 

turbulent, if Reynolds number was increased. There is no way in which the equations 

that we setup for laminar flow can sense that. In fact, if you continue to calculate the 

friction factor for Reynolds number greater than 2000, the line would be simply extended 

and we would predict a very low friction factor which does not accord with the 

experimental data. 

The correlations that I have shown here (Refer Slide Time: 15:56) are the familiar 

correlations that you have always used. You will see that, in laminar flow, friction factor 



was inversely proportional to Reynolds number, but later it becomes inversely 

proportional to the Reynolds to the power of 0.2 and the slope of the line clearly changes 

- significant difference between laminar and turbulent flow. 

Likewise, if I look at Nusselt number, then you will recall that in laminar flow under 

constant wall heat flux, Nusselt number would be 4.36 irrespective of the Prandtl number 

of the fluid, if the heat transfer was fully developed. Likewise, under constant wall 

temperature, it would be 3.66 irrespective of Prandtl number; in other words, Nusselt 

number is neither a function of Reynolds number nor Prandtl number, in fully developed 

heat transfer in a pipe. 

On the other hand, the experimental correlations will show you that Nusselt number 

strangely becomes function of both Reynolds and Prandtl. Nusselt number increases with 

Reynolds number for a fixed Prandtl number, and for a fixed Reynolds number, it 

increases with Prandtl number. So, suddenly something happens and Nusselt number 

which was independent of Reynolds and Prandtl number in laminar flows, suddenly 

becomes function of both Reynolds and Prandtl number. 

So, we can conclude that there is something fundamentally different in turbulent flows 

that laminar flow equations can hardly be expected to know. 

(Refer Slide Time: 17:41) 

 



Let us look a little bit closer inside the tube and observe the major velocity and 

temperature profiles in turbulent flows; for example, in a pipe flow, you know that the 

fully developed profile would be parabolic in laminar flow. But in a turbulent flow, if 

you were to measure the velocity profile, it would show a very sharp gradient and very 

large flat core, and then back again to wall at 0. In fact, if you were to look at u center 

line divided by u bar, it is 2 in laminar flow; in turbulent flow, it will vary from as low as 

1.05 to 1.3 depending on the Reynolds number. The higher the Reynolds number, the 

lower is the value. 

So, the maximum to mean velocity at very high Reynolds numbers exceeding say 1 

million would be about 1.05 - somewhere around 10000 or 8000. It would be of the order 

of 1.3. Similarly, if you were to measure the temperature in the flow, again you will 

recall the temperature profile T cl minus T w over T b minus T w; sorry, the temperature 

profile itself would be T wall here and T central line here and it would have a very 

parabolic nature. Whereas, the turbulent flow and the temperature profile will show 

characteristics which are like this - very sharp gradient there and flat core. 

So, the ratio of T central line minus T wall over T bulk minus T wall again would be of 

this type in turbulent flow. Velocity and temperature gradients at the wall in turbulent 

flow are always much greater than laminar flow with a much more flat core than you 

would get in laminar flow; it is very special. 

(Refer Slide Time: 19:44) 

 



Let us look at external boundary layer - flat plate with a free stream velocity U infinity 

and temperature T infinity. Then, the solid line shows a laminar flow boundary layer will 

develop, but at some distance Re x based on u infinity x by nu. Suddenly, there will be 

the boundary layer thickness and it will grow over a short distance which we will call as 

transitional zone or regime. Then, the boundary layer will grow at a much greater rate 

with respect to x. 

In fact delta, as we have seen already through our similarity solution, delta is 

proportional to x to the half in laminar boundary layer, but as we go along, we will see 

delta will be found to be proportional to x to the power of 0.8 in turbulent flows. So, the 

rate of growth of boundary layers is much faster in turbulent flows than it is in laminar 

flow. Similar would be the case as regards delta the thermal boundary layer thickness; 

although the manner in the ratio of delta by delta which was so strong, a function of 

Prandtl number here in laminar flow may not be so stronger function in turbulent 

boundary layers. 

What is interesting is that even in external flow, not only inducted flows, but even in 

external flows, turbulent flow shows very different behavior than in laminar flow. I said 

turbulent flow is always unsteady. What do we mean by that? 

(Refer Slide Time: 21:31) 

 



That is shown here in this figure. Suppose I have turbulent flow, let us say at Reynolds 

number of 30000; then, I use an instrument called the Pitot tube which you all have used 

in your under graduate experiments to measure velocity profile in a tube. 

(Refer Slide Time: 22:02) 

 

A Pitot tube is nothing but a hollow tube with a bend and the diameter of the mouth 

would be about 1 to 2mm; this stem is then connected to manometer to get… 

So, let us say, I measure the velocity starting from here to the center of the pipe, then if I 

put the Pitot tube here here here here here (Refer Slide Time: 22:16) facing in actual 

direction, then the Pitot tube does not see any randomness, any unsteadiness at all 

because the flow is steady on the mean. That is your compressor or the blower is 

supplying the mean velocity at a constant rate. Therefore, on the mean, the time average 

value of the velocity, which is what? In fact, Pitot tube does not see something which 

happens at scales which are smaller than its diameter. It simply averages out what it sees 

and gives you a profile which would look like this would look like this (Refer Slide 

Time: 23:11) 0 velocity at the wall and so on. 
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On the other hand, if I used an instrument known as hot wire anemometer, it has 2 stems 

and in this, a wire is connected. The diameter of the wire is 3 to 5 microns which means 

3 into 10 raise to minus 6 meters or 3 into 10 raise to minus 3 millimeters; which means 

we have a measuring instrument which is about 300 times smaller than the Pitot tube 

dimension. The hot wire anemometer works on the principle - the hot wire is given 

electrical current such that it attains a certain temperature.  

When the velocity flow, air or whatever flows over it, it cools down. But externally it has 

a compensating circuit which supplies additional energy in order to bring the temperature 

of the wire back to where it was set earlier. The amount of energy supplied to bring the 

wire back to its original temperature is a measure of the instantaneous velocity at that 

over the wire. Because the wire is so small, we can say, that is the instantaneous velocity 

at that point, where this instrument is kept - hot wire is kept. Now, a hot wire will only 

measure velocity as a function of time. If I put the hot wire here, then it will measure the 

velocity variation with time. 

If I wanted a picture of entire profile at the same time, such an instrument does not exist, 

but we can do a thought experiment for a moment and say we move the hot wire from 

wall to the axis swiftly, very very fast such that it picks up all most instantaneous 

velocity at the same time instant at different position. Mind you, this is a thought 

experiment. 
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Then, what will it look like? Then, you will see it will measure something like this. It 

will measure velocities which are highly zigzag at time t and at time t plus delta t, it will 

measure something quite entirely different shown by dotted line. If you measure again at 

t plus 2 delta t, it will show something else and so on and so forth.  

These days, instead of hot wire, people use laser Doppler anemometry for measurement 

of unsteadiness - unsteady motion. If you however to time average out or take average 

value of U at each point and draw a curve, then you will find that at different time, the 

curves will simply overlap each other. This is a very interesting idea that although the 

instantaneous velocities may differ greatly, the velocity on the mean is reproduced and 

the velocity on the mean would be exactly same as what was measured by the Pitot tube. 

In other words, what was hidden and not discovered by Pitot tube is first of all 

discovered by the very sensitive instrument called hot wire anemometer, but what it 

measures if it is averaged out? It would be again same as what was measured by the Pitot 

tube. 
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This idea of length scales is of great relevance in turbulent flow. Let us look at another 

picture: I said a sensitive instrument would measure velocity in a tube as a function of 

time. 

(Refer Slide Time: 28:21) 

 

So, let us say I have kept a tube, a fully developed turbulent flow and I have kept a hot 

wire anemometer at the center of the pipe facing the actual direction. Then, you will see 

that you will get an instantaneous value of u which is given by u hat and plotted as a 

function of time. You can see the zigzagness, but if I were to time average this, which 



means, if I were to do integral u cap d t over time t 0 to t, then I would get a value which 

I call u bar.  

Let us say the average value - that would remain almost constant; it will be constant at 

that point because the flow is fully developed. So, it is a flow steady on the mean, but 

instantaneously it is unsteady. Now, as you all know, you have used and you have 

experienced also, supposing I were to turn this Pitot tube to face the radial direction, then 

you know that because the flow is fully developed, the mean radial velocity will be 0, but 

in fact, it will be so at any radius of the pipe. 

(Refer Slide Time: 30:08) 

 

If I were to put a hot wire I would find that the radial velocity would show zigzagness - 

instantaneous value, but its average will be 0. That is why I have plotted it over here 

(Refer Slide Time: 30:26) and likewise the circumferential velocity would also show a 

finite value at different radii, instantaneous value will show, but its time average value 

will be 0 because the flow is fully developed; that is what is shown here.  

This is very unusual that although the flow is fully developed, instantaneous values of U 

V r and V theta or W and V or whichever - are all finite. They vary randomly with time, 

but their averages of V and W are 0; whereas the average of u is a constant at a single 

point. What this figure shows? However is the following, we could say that the 



instantaneous value is always mean plus a fluctuation, and the fluctuation may be 

positive or negative. 
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In fact, this is precisely what was done by Osborne Reynolds when he proposed his 

decomposition. It is shown here that the instantaneous value of phi where phi may be 

anything: velocity, u, v, w; it may be pressure; it may be temperature; it may be mass 

traction; does not matter what. The instantaneous value of each one of them would be 

function of x, y, z, t, but the mean value will only be a function x, y, z plus and a 

fluctuating value which is x, y, z, t and phi dash may be plus or minus. 

Then, with this decomposition, Reynolds postulated that, time averaging of phi cap 

would be limit t tends to infinity 0 to t phi cap d t equal to phi - the mean value; in other 

words, the integrated value or integrated time average value of the fluctuations will 

always be 0; this is the postulate of Osborne Reynolds. 
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A very interesting issue then arises at a point in the flow. Let us say I have a velocity 

fluctuation and a temperature fluctuation also. I want to calculate what will be the time 

average of u T bar; that is what I want to calculate; let us say product. Then, it would be 

u plus u dash multiplied by T plus T dash time average which will be equal to, where u 

and T are the time average values and therefore they would remain the same; time 

average values do not change plus you will get u dash T time average plus T u dash time 

average plus u dash T dash time average; that is what you will get. 

But notice that we have said that integrated value of any fluctuation will be always 0. 

Therefore, this would be u T plus T multiplied by u dash and that would be 0; sorry this 

should be T dash u plus u multiplied by T dash and that would too be 0, but u dash T 

dash will survive. Why? For example, let us look at this at the same point, let us say u 

varies like this (Refer Slide Time: 34:47) and this is u dash is plus or minus and I then 

brought T dash. So, these are T dashes. 

So, you can see the product of u dash and T dash may be negative; it may be sometimes 

positive; it may be anything, but it will never be 0, even after the product has been time 

averaged. Therefore, u dash T dash will not be 0; time averaging of u dash T dash - it 

may be 0 sometimes, but very often it may even be positive or it may even be negative, 

and so on and so forth; 
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So, in other words, the time averaging of the product u T will be equal to u T plus u dash 

T dash. That is what I have shown here in this slide at phi 1 phi 2, time average is equal 

to phi 1 multiplied by phi 2 plus phi 1 dash phi 2 dash time average. 

The next question is - what is this T equal to infinity? How long do I have to average? 

So, that phi dash or integration of phi dash will result into 0; that t max we would 

discover a little later in the next lecture from what is called as an Auto-correlation 

coefficient. So, we will defer that as to what this infinity should mean, to the next 

lecture. So, the transport equations of phi dash variables will be time average, now. 
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We already have these equations; for example, the continued equation of a turbulent flow 

would be written as: for constant density flow, it will be simply du cap by dx j equal to 0 

and if I were to time average this, it will be simply d by dx j of u j plus u dash j of time 

average; that would be simply du j by dx j plus du dash by dx j, but then, we say that will 

be 0; that gives you du j by dx j equal to 0 the time average value. 
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Similarly, the instantaneous momentum equation would look like this: rho m du i by dt 

and these are the convective term this is a pressure gradient term and these are the 



stresses, instantaneous. If I were to time average, then notice that this will simply 

transform to that because u i dash will go to 0. This also will have dp by d will become 

dp by dx, but remember this has a product in it. So, you will get d by dx j of u j u i plus d 

by dx j of u dash j u i j and that is what I have written; I have transferred that u dash term 

to the right hand side so that you get d by dx j tau ij which is the laminar stress, which is 

derived from this minus rho u i dash u j dash which is the time average. 
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Remember, tau ij would be mu times du j by dx i plus du i by dx j and the time averaging 

of this would simply result into mu into du i dx j plus du j dx i because no product is 

involved in this definition. Therefore, tau ij would be that and a turbulent stress, 

instantaneous stress would be converted to a time mean stress represented by mean 

velocity gradients. Whenever I say mean, it means time averaged value and this is the 

Stokes’s law. 

So, this newly appearing quantity, minus rho u i prime u j prime is what is called the 

turbulent stress in analogy with laminar stress tau ij. Always with a negative sign, 

turbulent stress is denoted as minus rho m u i prime u j prime and it arises out of time 

averaging of the convective term - rho m du cap j u i cap j dx j. 
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Likewise, if I look at the temperature equation, this would be the instantaneous form of 

the equation. Recall we had mu phi v, the viscous dissipation term, and this would be the 

conduction term and this is the convection term. Then the time averaging of that would 

simply result in dt by dt, but the time averaging of this which is a product, would result 

into du j by dx j here; the product term and of the fluctuation has been transferred to this 

side which will result in minus d by dx j of rho m C pm u j dash T dash. The time 

averaging of the conduction term would simply result into that q j mu phi cap v will 

result into mu phi v plus this (Refer Slide Time: 40:26 to 41:06). 
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Now, this requires a little explanation: Remember, mu phi v is mu times 2 into du 1 by 

dx 1 whole square plus du 2 by dx 2 whole square - this is the instantaneous value I am 

writing; plus and likewise in the third direction plus du 1 by dx 2 plus du 2 by dx 1 

square, and so on and so forth. If I time average these quantities, then you will see this 

quantity time averaged will be would be du 1 by dx 1 plus du dash 1 by dx 1 whole 

square time average and this will be equal to du 1by dx 1 whole square plus du 1 dash by 

dx 1 square plus 2 times du 1 by dx 1 multiplied by du 1 by dx 1 dash - all time average 

You will see therefore, that this term will survive whereas this term will vanish because 

single u 1 dash appears here and this is the mean value. Therefore, you will simply get 

this as du 1 by dx 1 whole square plus du 1 dash by dx 1 whole square time average 

(Refer Slide Time: 42:58 to 43:20). 
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So, in other words, the mu phi v term will result into 2 terms: mu phi v which is formed 

from the product of tau ij mean multiplied by velocity gradients and tau prime ij 

multiplied by du i prime by dx j of the fluctuation part - the fluctuating stress and the 

fluctuating velocity gradient. This quantity is called the turbulent energy dissipation; 

usually it is very small compared to all other terms in the energy equation. 
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Later, we will find that that term plays a significant role in kinetic energy balance, but in 

thermal energy balance which usually very small, the same thing would hold even for 



Mass Transfer Equation, and again you will have a turbulent mass flux with a negative 

sign, exactly same way as we did for the scalar temperature. 
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So, in summary, I would say we have now in the momentum equation 6 turbulent 

stresses. rho m u i prime u j prime; when i is equal to j, we call them normal stresses; rho 

m u i prime square with a negative sign when i is not equal to j, we will have shear 

stresses; u i prime square would always be positive because this is the square of the same 

quantity, but u i prime u j prime in general can be both positive or negative; depends on 

its location. In energy equation again u i dash prime T prime can likewise be positive or 

negative. 

So, in effect, we have now a new closure problem. We simply have three momentum 

equations and 1 continuity equation, but we have created six more new unknowns called 

the turbulent stresses. So we have four equations and u, three velocities pressure and six 

stresses - ten unknowns. 

So, in other words, unless we model these, we cannot make any progress with the 

solution of this Reynolds Averaged Navier Stokes equation which is often called - the 

RANS equations. So, in order to render the number of equations equal to the number of 

unknowns, we need to model the turbulent stresses and fluxes. This is known as 

turbulent modeling 
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We will take that up essentially Reynolds time averaging has led to the closure problem. 

The task of turbulence modeling is to recover the information loss due to time averaging. 

This kind of a closure problem we have encountered earlier also, in laminar flow where 

we made a continuum approximation and we recovered the information lost in averaging 

over large number of particles, through viscosity and conductivity, and so on and so 

forth. 

Likewise, we will have to do something to recover the lost information in time averaging 

and that is known as turbulence modeling. In the next lecture, we shall consider some of 

the formal aspect of turbulence which aid turbulence modeling. 


