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In this lecture, we shall take up Laminar Developing Flow Heat Transfer. As we will 

recall, in the entrance region of a duct the velocity profile develops like so. This is the 

velocity profile or velocity boundary layer will develop like so, but the temperature 

boundary layer development would be governed by the value of Prandtl number. 
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If Prandtl number was very small you will get very rapid development. This is for 

Prandtl number very much less than 1 because, the thermal boundary layers will develop 

much faster than the velocity boundary layer and this is the case of liquid metals. On the 

other hand, if Prandtl number was very large there is oils then, the thermal boundary 

layer development will be much slower and this would be the temperature boundary 

layer for Prandtl number much greater than 1 (Refer Slide Time: 01:36). 

So much so, we can make very simple approximations for these two cases. For example, 

for liquid metals where Prandtl number is of the order of 0.001, over greater part of the 

length u will be simply equal to u bar whereas, Prandtl number very greater than 1 over 

greater part of the thermal development u will be simply equal to u fully develop and 

which will be function of r the array, which is for a circular tube it will be two times u 

bar into 1 minus r square by r square for example. 

So, one can make very suitable approximations for these two extreme cases and obtain 

solutions but, when Prandtl number is between 0.5 and 10 then, both velocity and 

temperature profiles will develop at comparable rates and that is the case called as the 

Simultaneous Development of Flow and Heat Transfer. 



That is the importance of Prandtl number in study of laminar developing heat transfer. 

So, for Prandtl number close to 1 in a small range from 0.5 to 10, one must consider both 

flow and heat transfer development simultaneously. 

When Prandtl number is very greater than 1 then, flow will be fully developed and we 

will be calling it a thermal entry length problem because the velocity is specified 

likewise, when Prandtl number is very less than 1 then, u will be specified at the inlet 

value u and it is almost like a piston or a slug flow thermal entry length problem, so we 

will consider these cases separately. 
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So, this is much of what I have already explain to you that for Prandtl numbers much 

greater than that is oils the flow will be fully develop over greater part of the thermal 

development length and in liquid metals it will be a taken as almost equal to u bar. 
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The real problem comes when there is a Prandtl number moderate and the two layers can 

be expected to develop at the same rate or comparable rates. Simultaneous development 

of both flow and heat transfer, we consider by way of an example the entry flow between 

two parallel plates 2b apart then, the governing equations will be this; this will be the 

continuity equation this you will recall is the momentum equation and now, we will have 

this as the temperature equation. 

Of course, if we make boundary layer approximations and when Reynolds Prandtl - as 

you will recall from lecture number 17 - is greater than 100 then, temperature gradients 

in the y direction are much greater than the temperature gradients in the x direction, so 

this term would be dropped. We will be assuming that the Reynolds multiplied by 

Prandtl number is greater than 100. 

The variables are shown here, so this is the convection term and there is one diffusion 

term that is this multiplied by 1 over Reynolds Prandtl. 
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From lecture 14, you will recall that we had adopted Langhaar solution method and we 

have already obtained the velocity solution as given by C 1, C 2. For different values of 

beta, we printed out values of friction factor and others, but since u is known we can also 

get v from the continuity equation that is here. 

(Refer Slide Time: 05:56) 

 

Knowing u star and v star, we have these two quantities unknown and therefore, we now 

intent to solve these equation only for temperature using the velocity solution from 

Langhaar’s case. 
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That resulting equation can again be solved by Langhaar’s method of linearization. 

However, the algebra turns out to be very cumbersome as you will see from a paper by 

Heaton and Reynolds in case international general of heat and mass transfer volume 7 

1964. 

(Refer Slide Time: 06:49) 

 



(Refer Slide Time: 06:54) 

 

(Refer Slide Time: 07:25) 

 

So, the method is very cumbersome and therefore, what I am going to do is to present 

only the solution in order that you appreciate what the solutions under simultaneous 

development looks like. I am going to consider the case of flow between two parallel 

plates, q top is finite but q bottom is 0; this I will call heated side and this is unheated. 

The flow and temperature profiles are now simultaneously developing in this particular 

case. The x plus here is simply x divided by D h Reynolds Prandtl, theta is defined as 

temperature minus temperature in inlet divided by q on the hot side - I mean - q heated D 



h divided by k of course, the bulk temperature would vary linearly as - you will recall - 2 

x plus. Therefore, the Nusselt number would be defined as h D h by k as 1 over delta 

theta where delta theta is T wall minus T bulk. 

So, you will see that plotted for each Prandtl number there are three Prandtl numbers I 

have taken. You have Nu h on the heated side, theta wall on the heated side minus theta 

bulk and theta wall on the unheated side. I am showing here the solutions for x plus 

equal to 0.001, 0.0025, 0.005, 0.01, 0.05 and 0.1 and ultimately of course, at infinity the 

value is 5.39 for the Nusselt number and it is almost reached around let say 0.09 or you 

can say at about 0.1 at 0.7 Prandtl number again Nusselt number starts off from a very 

high value at close to the entrance and gradually goes on decreasing and again at about 

0.1 you get very close to fully developed value but at 0.01 even at 0.1 the value is not 

very close to fully developed value, but it will be tend close to fully develop let say little 

longer at 0.12 at x plus equal to 0.1. 

This can be deceptive, x plus equal to 0.1 at Prandtl number of 0.01 actually represents a 

shorter physical length when the Prandtl number is 10. So, as much as I say x plus equal 

to 0.1; it does not mean same physical length at low Prandtl number. At low Prandtl 

number the length is longer, the physical length is shorter then, it is for Prandtl number 

greater than 1 at 10 for example. 

So, these are very instructive solutions, notice also that on the unheated side the wall 

temperature is less than the bulk value. As you can see in all cases that it is only on the 

heated side that the wall temperature exceeds the bulk temperature and the value of bulk 

temperature as evaluated from this is given right here (Refer Slide Time: 10:20). 
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So, this is how the heat transfer coefficient would vary, on the heated side it will vary 

like that. This is Nu h versus x plus and it reaches 0.1 we said, when Nusselt number 

becomes constant with x that is, when we say fully develop heat transfer has been 

achieved. 

So, similar thing is been done for circular tube - the cross section is a circular tube -and 

of course, it is uniform all around and also axially; q wall is constant axially as well as in 

circumferential direction. Let us see what happens when the flow and heat transfer 

develops simultaneous? 
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Again, as you will see in this case, theta bulk would vary as 4 x plus; u star and v star I 

have again taken from Langhaar solution to solve the temperature problem; Nusselt 

number is given by this and delta theta is theta wall minus theta bulk. 

So, in this case for Prandtl equal to 10 and x plus equal to same values, you get very 

close to fully develop Nusselt number at x plus equal to 0.1. At 0.7, again very much so 

in fact it indicates that the development lengths are Prandtl number being very close to 1 

it is almost the same, but at 0.01 again at x plus equal to 0.1 then, the Nusselt number is 

still higher and it would require larger x plus get to very close to fully developed value. 

These are the theta bulk and the wall temperatures are 0.697 to start with at Prandtl 

number of 10, 0.12, 0.15, 0.22 point a big apparent this should be 0.0697 I have made an 

error here and then, at the temperature difference goes on increasing but becomes 

progressively constant which results into constant Nusselt number in all Prandtl 

numbers. As you recall, in the fully developed state the Nusselt number is constant at 

4.36. 

So, for both parallel plates and circular tubes thermal development length is L h by D h 

approximately equal to 0.1 times Reynolds Prandtl. So obviously, when the Prandtl 

number is small L h by D h L h the physical length would be smaller then, when the 

Prandtl number is very large, let us say, about 10 this is the typical behavior for ducts of 

nearly all cross sections. You can easily take x plus equal to 0.1 as indicative of thermal 



development length, but for flow development length - you will recall - we had taken for 

parallel plates it was 0.1 times Reynolds and 0.05 times Reynolds for circular tube. So 

for thermal development and in the range of Prandtl number close to 1 as I said from 0.5 

to 10 it is very good to approximate that as 0.1 times Reynolds Prandtl. 
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Now, I consider a case of both plates of parallel plates, here also T w and here also T w. 

So, we have case of uniform wall temperature and I am considering again Prandtl 

numbers is in the vicinity of 1, so we can see here 0.7 to 5. 
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Again Langhaar’s method has been applied for constant wall temperature case and you 

will see, but both plates are heated now unlike the first problem in which only 1 plate 

was heated. 

The plate temperatures are constant x plus equal to 1 raise minus 4 up to infinity Nusselt 

number goes from high of 40.9 at the close to inlet to 7.54. This is how the theta bulk 

varies theta bulk decreases to 0 x plus because theta bulk essentially is theta bulk minus t 

wall and therefore, that goes on reducing x plus is equal to this here for 2.5. You can see 

that nearly fully developed value is reached at about 0.027; you could even say 0.012, it 

will depends on how you define they are fully developed at point Prandtl equal to 0.7. 

Again, you get very good results from 0.012 onwards very close to fully developed value 

results at this value. 

So, you can see that behavior of Nusselt number is very similar and thermal development 

length in such a case could be taken as let us say about 0.03 if you like or 0.02 is good 

enough to be close to 7.54. 
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Similarly, we consider the case of T w equal to constant. Now, actually the circular tube 

as T w equal to constant and simultaneous development is being considered for three 

Prandtl numbers; Prandtl number for 0.7, 2 and 5. Again you will see that at 0.7 you get 

local Nusselt number as 16.8 and so on so forth to 3.66. 



The mean Nusselt number goes on like that; the mean Nusselt number is defined as 1 

over x 0 to x Nu x d x. Similarly at Prandtl 2, you get that at fully develop state. You get 

3.66 which is in the unknown value, we had already computed that when we considered 

fully developed heat transfer Prandtl number 2 again is around at 0.05, you get 4.1 and 

3.9. 

So, in terms of local Nusselt numbers as the development length of 0.05 is a very good 

indicator of thermal development x plus equal to 0.05, it is very good for near unity 

Prandtl number fluids that for circular tube. 
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Now, we turn our attention to oils and Prandtl number very much greater than 1. As I 

said over greater part of the thermal development length the velocity profile can be 

assumed to be fully developed. 

Hence, for parallel plates for example, it will be u f d dT by dx equal to alpha d 2 T by 

dy square and u f d by u bar square here will be 3 by 2 1 minus y by b square, where b is 

the half distance between the two plates. For a circular tube it will be u f d dT by dx will 

be equal to alpha divided by r d by bigger this is with d by dr into r dT by dr and u f d by 

u bar is equal to 2 into 1 minus r by r whole square. 



The boundary conditions are at the symmetry plane that is y equal to 0 or r equal to 0 and 

y equal to b or y equal to R, you have the wall condition which must be specified with 

the inlet condition T equal T i at x equal to 0. 
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(Refer Slide Time: 17:53) 

 

So, let us first of all take the case of flow between parallel plates and T wall is equal to 

constant flow between parallel plates and T wall is constant on both sides the fluid enters 

at T i but the velocity profile is already fully developed and it remains so throughout the 

length. 



How do we obtain solution for this case? The governing equation would be if I substitute 

for u over u bar equal to 3 by 2 into 1 minus y by b square then, defining y star equal to y 

divided by b x star equal to x by b Reynolds Prandtl and T minus T w T i minus T w 

equal to theta then, the governing equation would simply be this and the boundary 

condition will be at the wall theta would be 0 because that is how we have defined theta 

d theta d y star would be 0 at the symmetric plane and on the inlet plane theta would be 

equal to 1 

This problem with these boundary conditions is called the Graetz problem is very famous 

Graetz problem in heat transfer and it is solve by the method of separation of variables. 

Of course, now a days you can solve this problem by finite difference method quite 

easily but I am deliberately presenting here the method of separation of variables and 

indicating the solutions that are obtained mind you again all this is for Prandtl number 

very greater than 1 or oils. 
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So, we say let theta be product of 2 functions X of x star and Y of y star then, if I 

substitute in this then, I would get two ODEs X dash plus 8 by 3 lambda square X equal 

to 0 with X 0 equal to 1 which is the inlet condition and Y double prime plus delta square 

1 minus y star square Y equal to 0 with Y equal to 1 and Y dash equal to 0 is equal to 0 

lambda square is the Eigen values. 



Now, this solution is called the Sturm-Louville equation set and the solution to that is 

simply a product solution. For example, the first equation would have a straight forward 

solution x would be proportional to exponential of minus 8 by 3 lambda n square x star 

and multiplied by Y n star which is the solution to that equation. 

For different values of n, you will have different values of constant of proportionality 

and the functions Y n. The C n values in this expression coefficient is evaluated from 0 

to 1 1 minus y star square Y n dy star over that equal to minus 2 by lambda n dy n by d 

lambda n nu star equal to 1. 
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Now, how do we obtain lambda n's? That is simply by solving this equation by shooting 

method. So, you start at x is a symmetry and this is the wall, so you start with y dash 

equal to 0 as the known boundary condition, y itself can be anything and you choose 

different values of lambda. You may arrive at here and then, you may arrive at here and 

then, the correct value of lambda will be 1, this is lambda correct (Refer Slide Time: 

21:15). 

This will be the first value of lambda likewise; you go on changing the values of lambda. 

The next correct value will come out in that fashion, this is lambda 1, this is lambda 2 the 

third value will come out to be like so; the fourth correct value will come out to be so 



and so on and so forth. (Refer Slide Time: 21:39). So, this is lambda 3, this is lambda 4 

and so on so forth. 
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This is how we determine the lambda n. In all cases - I mean y star equal to 1 will turn 

out to be 0 which is the wall condition. 
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Once, you have determine lambda n's in this way, you can see Nusselt number itself will 

be h times hydraulic diameter because the plate widths is 2b; the distance between the 



plates is 2b, so hydraulic diameter is 4b and that would equal to minus 4 theta prime 1 

divided by theta prime at the wall divided by theta bulk. 

Theta bulk itself would be evaluated in this manner, which gives you 3 by 2 A n by 

lambda n square exponential of minus 8 by 3 lambda n square x plus. Theta prime will 

be given in this fashion, where A n is equal to minus C n Y n dash 1; the Y n dash 1 are 

noted down every time you get the solution at 1. 

So, the slope of the y function for all correct solutions is noted down and that is stored 

into an array call Y n 1. So that is how you get the A n coefficient in this expression. 

Therefore, your Nusselt number expression looks like 8 by 3 into some of that divided by 

some of this (Refer Slide Time:23:21). The mean Nusselt number would be evaluated in 

this manner, which is simply minus ln theta bulk divided by x star. 
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Here are the values of lambda n, C n and A n to be used in solving. So, these can be 

calculated once and for all for parallel plates 0, 1, 2, 3, 4 and for n greater than 4 they can 

be curve fitted in this manner. Incidentally, it so turns out that these coefficients also 

apply to the circular tube case; if I had circular tube with uniform wall temperature then 

the same coefficients would again apply to the circular tube case. This was shown by 

Brown in 1960. 
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Here are the computations of T wall equal to constant case. Here, I have got x star 

divided by 4 going from 0 to infinity. Theta bulk of course, at inlet would be 1 and it is 

reducing down to 0. Nusselt number would start with infinity of course, at x equal 0 but 

would begin to decline. You can see about by 0.02 the Nusselt number has almost 

become equal to the fully developed heat transfer and whereas, the mean Nusselt number 

takes much longer something like 0.3 or 0.4. Nu fully developed of course, can be simply 

evaluated from 8 by 3 into lambda naught square which is the lambda naught was given 

as 1.6816. 
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So, you can see that it will cannot to be 7.5407and that is what it is very well predicted 

here, because only first term is required for fully developed heat transfer. 
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You can see Nusselt number does falls even in thermal entrance length problem of this 

type, where velocity has been assumed to be fully develop and the solution is applicable 

to oils, where Prandtl number is very large. 
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We now take the case of constant wall heat flux. When q w is constant on both the 

plates, ultimately the solution would become like this under the fully develop heat 

transfer the solution would be T wall there and there would be T bulk (Refer Slide Time: 

25:44). 



Although T wall and T bulk will increase with x, the difference between T walls minus T 

bulk would remain constant in the fully developed, whereas in the earlier cases, T wall 

and T bulk will increase at different rates and therefore at individual points also. 

Individual values of y T wall and T bulk will change actually at different rates, but once 

you reach the fully develop then, for all values of y the temperatures would increase 

linearly. Therefore, the solution can be split up in this manner as I shown. 
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Let us say in this case, the dimensionless temperature is call psi instead of theta and that 

would be T x y minus T fully develop q wall minus q b by k. That is, in the developing 

part length and then onwards it is fully developed. 

So, I can split it up as - but of course, as I said I do not know what T fd is but will 

discover that in a minute. So, this is taken as t theta x y plus theta fully develop x y, 

because, q wall equal to constant in given temperature has been normalized with respect 

to q wall b by k, as you can see here. In the fully develop path theta fd by theta x star 

would be 4, as I indicated here. All of them would be varying linearly and that would be 

exactly equal to dT bulk by dx and that is equal to x by b Reynolds Prandtl x star and 

theta fd by dx star would be 4. 

We have 2 equations, this would be the full equation for the fully develop part 3 by 2 1 

minus y star having substituted for theta fd by dx. This will be, I have substituted 4 here, 



so 3 by 8 into 4 is 3 by 2 d 2 theta fd by dy star square (Refer Slide Time: 27:52). This is 

the fully developed part of the solution and 3 by 8 1 minus y star square d theta by dx 

equal to d 2 theta by dy square is the developing part. This equation is very similar to 

what we had in the constant wall temperature case. 
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For the fully developed parts straight forward integration gives theta fd equal to 3 by 4 

into a function of y plus 4 x star minus 39 by 280 - a very straightforward integration. 

For the developing part, it will be very similar to what we had. For the constant wall 

temperature, the function of coefficients C n Y n y star into a function of y and this 

would be a function of x. C n would be determine again in this fashion where theta fd at 

x star equal to 0 that is, putting 4 x star equal to 0 here; I will have a function of y into 1 

minus y star y n y star dy star into all that. Y n distribution with y is already known, so I 

can determine C n. 



(Refer Slide Time: 29:06) 

 

So the complete solution will look like this, 3 by 4 y star square minus y 4 by 6 plus 4 x 

star minus 39 by 280 plus C n Y n, which is the developing part. If I substitute y equal to 

1, I will get psi wall which will vary in this fashion and if I carry out the integration to 

evaluate bulk temperature, I will get psi bulk but q wall is already constant and psi bulk 

will be 4 x star, but you can also verify that by integrating this with respect in the usual 

manner. B n here is C n Y n 1 then, the Nusselt number would become this 4 divide by 

psi wall minus psi bulk and 1 over Nusselt number would become 1 over 4 into 17 by 35 

all this. So this is the complete solution to the constant wall heat flux problem. 
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Here are this Eigen values and Eigen constants for the constant wall heat flux case. 

These are lambda n values; these are minus B n values they can be correlated for n 

greater than 10 by this expression. The Nusselt number value themselves looks like this x 

stars by 4 local Nusselt number varies from as I have 32 going down to 8.235. 

You can see that the under constant wall heat flux case, the thermal development length 

for very high Prandtl number fluids is about 0.05; x star by 4 equal to 0.05 or x star equal 

to 0.2 mean Nusselt number varies in this fashions. This value we have already noted 

before that for parallel plates with constant wall heat flux on both sides it will be 8.235. 



(Refer Slide Time: 31:00) 

 

We now take up the final case of Prandtl number very much less than 1 that is liquid 

metal. Then, in this case the entrance region the velocity profile can be taken as equal to 

u bar and therefore, it will be u bar dT by dx equal to alpha d 2 T by dy square or 1 over 

4 d theta by dx square d 2 theta by dy star square and these are the definition. 

You will recall this is nothing but the heat conduction equation or unsteady heat 

conduction equation, if you replace x star by time. So, solutions to these can be obtained 

by method of separation of variables. 
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So, I will not develop that solution; it is a fairly well known solution and the solution is 

given for T wall equal to constant, the solution will turn out to be this. So, theta bulk is 

calculated in this fashion; d theta by dy star is the wall heat flux is calculated in this 

fashion and then, Nusselt number is calculated in this fashion. So, the evaluation of the 

series is what is required to obtain the Nusselt number. 

For large x star Nu fully developed turns out to be equal to pi square and equal to 9.87 

for liquid metals. For Prandtl number very much greater than 1 it was 7.545 and the fully 

develop Nusselt number here is 9.87. 

(Refer Slide Time: 32:30) 

 

For constant wall heat flux case, again you can develop a solution which is psi equal to 

theta plus theta fd in this manner; this is the developing part of the solution and this is the 

fully develop part of the solution. You can evaluate psi wall, psi bulk is this and 

therefore, Nu x can be evaluated in this fashion. 

Again, for larger x star Nu fd now turns to be 12, which is much greater than 8.235 for 

Prandtl number very much greater than 1. With this, I conclude everything on laminar 

developing heat transfer. As I said, for Prandtl numbers close to 1 - let us say - between 

Prandtl number ranges 0.5 to 10 one must solve the velocity and the temperature 

equation simultaneously. It is nowadays the best done by using CFD codes or you can 



write your own finite different course is very easy to write for this particular class of 

problems. 

When Prandtl number is very much greater than 1 then, you can use fully develop 

velocity profiles which are available to you on our previous lectures. For Prandtl number 

very less than 1, you can easily take u equal to u bar and the problem becomes 

essentially that of heat conduction. So, it is a very straight forward to evaluate for Prandtl 

number very much less than 1. 


