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In the previous two lectures, we considered friction factors in fully developed laminar 

flow in regular section Ducts as well as Ducts of complex cross sections like any 

arbitrary cross section, as long as they were singly connected. 
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We now turn our attention to fully developed heat transfer and like we did in the case of 

friction factor we shall, first of all, look at very simple situations like the circular tube 

family annulus and so on so forth. 
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Under variety of boundary conditions, to do that we must define fully developed heat 

transfer. Consider these Ducts, in which fluid at uniform temperature enters and there is 

a constant wall heat flux supplied at the wall. 

Then, you can see that the wall temperature will begin to rise and after some distance 

would rise at a linear rate. The bulk temperature however by first law of thermodynamic 

that is m dot c p into d T bulk by d x. 
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Heat flux is constant and m dot c p into d T bulk by d x into d T bulk will be simply 

equal to q wall into perimeter into d x. Therefore, d T bulk by d x will be simply q wall 

into perimeter divided by m dot c p and all these are constant. 

You would see that the bulk temperature would rise linearly with x; right from the start. 

We assume that the velocity profile may or may not be fully developed. 

Therefore, this shows the thermal development of the temperature profile. We can see, it 

is started with a uniform temperature but then as the heat flux comes in, it assumes a 

curve shape. The gradient at each section would be constant because q wall is constant. 
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Ultimately, the profile would become like that. Since, heat transfer coefficient is defined 

as q wall over T wall minus t bulk and this is constant. The difference between T wall 

minus T bulk is small to begin with and heat transfer coefficient is high near x equal to 0. 

It progressively drops as difference between T wall minus T bulk increases and becomes 

constant because T wall minus T bulk itself becomes constant. 
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That is depicted on the left figure here. Now, let us consider another boundary condition, 

which is frequently met that of a constant wall temperature. This is like steam heating, in 

which the wall temperature is constant. 

The fluid enters at a value lower than the wall temperature, which is shown here. The 

fluid bulk temperature would start rising. You can see here, unlike the constant wall heat 

flux case the bulk temperature does not raise linearly but it rises non-linearly with x. 

To begin with, the gradient of temperature is very large and at the wall h, which is minus 

k d T by d y at R or plus here divided by T wall minus T bulk although, T wall minus T 

bulk is large. 

So, k d T d y at R is very large. As a result, again you get a variation of heat transfer 

coefficient h, which is very similar to that in a constant heat flux case. That is what I 

have shown here (Refer Slide Time: 05:08); h goes on changing with x but decreasing 

with x. The temperature profile becomes curved because of the thermal boundary layer 

development. 

At each section, the T wall will be same but only thing is the T central line will go on 

increasing. So, that the T bulk goes on increasing and this variation is non-linear as I 

have indicated here. 



If the Duct was very long say, going up to infinity, the bulk temperature itself would 

become equal to the wall temperature. In fact, the temperature at all radii will become 

equal to the wall temperature. 

But that would occur only at infinity and it is not a case of importance in practical Ducts, 

which have limited length to diameter ratio. Fortunately, it happens that as the 

temperature profile develops, the gradient at the wall goes on changing; as a result the 

heat transfer rate goes on changing with x. 

A point is reached beyond which although T bulk is changing and heat transfer the 

gradient of the temperature is changing at the wall. A point is reached, where k d T d R 

divided by T wall minus T bulk becomes constant or h becomes constant. 

In heat transfer, we say fully developed heat transfer is identified with constancy of h 

with axial distance. To show this, let us consider this - what does this imply for the 

temperature? 
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We define, for example phi as a function of x and r in case of a circular tube as T wall x 

minus T x r divided by T wall x divided by T bulk x, Now, when you T wall and T bulk 

can only be functions of x, where T bulk is rho c p u T dA and rho c p u dA, where dA is 

the is the area of cross section. 



In fully developed heat transfer, we say that d phi by d x will be 0. The dimensionless 

temperature profile will go to 0 or dimensionless temperature profile will become 

constant with x. 

Since, phi is a constant with x we would expect that d phi by d r at the wall will also be 

constant with x, which is was means that it is equal to minus d T by d r, r equal to R 

divided by T wall minus T bulk x equal to q wall over T wall x minus T bulk x. This 

definition is used for constant heat flux case this definition would be would indicate 

definition of h in case of constant wall temperature 

You will see that h becomes constant. So, fully developed heat transfer and constancy of 

h implies that d phi by d x must be equal to 0. It is the dimensionless temperature which 

must be 0. 

Remember, we defined fully developed flow, d u by d x itself equal to 0. In heat transfer, 

we say fully developed dimensionless temperature gradient with x is 0 is the condition 

for fully developed heat transfer. 

It implies h equal to constant. Although T wall and T bulk are indeed temperatures at 

every radius may vary with x and r as long as T wall T bulk. The heat flux that ratio is 

remains constant or h is constant we say the fully developed heat transfer has been 

reached.  

Let us take, the first case, the simplest case which you have studied in your 

undergraduate course and that of a circular tube with constant heat flux at the wall. 
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In that case, the governing equation as you will recall is simply one over r d by d r r d T 

by d r equal to u divided by alpha, alpha is a thermal diffusivity, k by rho c p into d T d 

x.  Since, q wall is constant d T d x would be replace by d T bulk d x and it will actually 

also mean d T wall by d x. 
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From our definition, you can see if d T bulk if I have to say d phi by d x equal to 0 and d 

T x equal to d b d T bulk x. Then, d T wall by d x will also be 0. To make it explicit let 



us say, d phi by d x equal to 0 would imply that phi is equal T wall minus T divided by T 

wall minus T bulk. 

This would imply 1 over T wall minus T bulk into d T wall minus T by d x minus 1 over 

T wall minus T over T wall minus T bulk square d T by d x T wall minus T bulk equal to 

0. 

Which essentially gives me d T w minus T by d x equal to T wall minus T over T wall 

minus T bulk into d T wall minus T bulk by d x. This implies that all d T w by d x is 

equal to d T by d x and is also equal to d T bulk by d x. 

The implication is that once the fully developed flow is reach, temperatures at all radii 

increase constant with x equal to an all radii d T x is equal to d T by d x. 
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You will see that d T bulk by d x is simply; this is m dot into c p and this is q wall into 

perimeter, which is a constant. Therefore, the equation would simply become 1 over r d 

by d r r d T by d r. 

Fully developed flow in a circular tube is given as 2 u bar 1 minus r square by R square 

and this will be that. If I integrate this equation twice with boundary conditions T equal 

to T wall at r equal to R and d T by d r equal to 0 at the axis of symmetry. Then, I can 

determine 2 constants of integration and the result is shown on the next slide here, T is 



equal to T wall minus 3 by 4 q wall over k R plus q wall over k R into r square minus r 4 

R. 
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Now, I evaluate T bulk which are you will recall and we assume constant properties so 

rho c p just cancels. If I have to substitute this for temperature and the velocity profile 

from the previous slide then, I would get T w minus 11 by 24 q wall over k R. 

In all these cases, integrations are very important and you have to take lot of care to 

make sure that you have made no errors in evaluating the temperature in evaluating the 

integrals. You can now see that Nusselt number, which is defined as h D by k will be 

equal to 2 R by k q wall over T wall minus T bulk T wall minus T bulk is 11 by 24 q 

wall R by a. So that gives us 48 by 11 equal to very well-known result 4.3636, which you 

derived in your undergraduate course. 
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A similar analysis for flow between parallel plates, which are separated by a distance 2 b. 

If I have 2 parallel plates and the distance between the plates is 2 b and if I measure y 

from the axis symmetry. Then, you fully developed divided by u bar. In this particular 

case is 3 by 2 1 minus y square by b square. 

As you recall and if I carry out the similar analysis for constant heat flux at both the 

walls then the answer, I would get is based on hydraulic diameter. The hydraulic 

diameter for plate distance of 2 b and D h is 2 times the plate distance. 

That is equal to 4 b so h 4 b by k would give you 8.235. Very simple cases that can be 

done by pencil and paper integration, no difficulty at all; you do not need numerical 

integration or anything like that. 
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Let us now turn our attention to little bit more complicated thing. Again, I am going to 

consider now, if flow in an annulus flow inside an annulus, you can get variety of it. It 

may be heated from inside or it may be heated from outside q wall o or q wall i. 

We are going to consider this particular case; in fact, both the cases in turn. Let us look 

at, you will recall from our earlier analysis that fully developed velocity profile is given 

as 2 by m 1 minus r by r o square plus B l n r by r o, which has a logarithmic term in it. 



B itself is this, m is this and r star is r i by r o, the radius ratio of the annulus. The 

equation proper remains the same, it does not change at all only thing is d T d x here will 

be d T bulk by d x. 

That would be equal to 2 pi r o q wall o plus r i q wall i divided by rho c p u bar pi r o 

square minus r i square. We can have 2 types of boundary conditions - in the first case 

outside wall is heated. So, the q wall o is given equal to k d T by d r at r o. 

At the inner radius r I, we have T w i. On the other hand, we can also have a case in 

which the inner heat flux is given and the outer wall temperature is T w o. 
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Annulus solution. If I integrate this particular equation with substituting for d T by d x d 

T bulk by d x and u fd equal to this and integrate this equation twice, which is mind you 

quite a elaborate integration because logarithms are involve. 

I would get temperature itself as that, where A itself A the multiplier of this square 

bracket is this and q star is inner wall heat transfer divided by outer wall heat flux. I will 

consider 2 cases as I said. 

In case one, where outer wall is heated c 1 turns out to be this and c 2 turns out to be this. 

In the other case, where inner wall is heated it will turn out to be this and c 2 is equal to 

that. 
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These things require very careful algebra, in order to avoid any errors. I can express the 

solution that of the previous slide in a more compact form. As T minus T w o q wall o r o 

by k, which has dimensions of temperature q wall r o by k has dimension equal to 1 over 

m into 1 plus q star r star plus mind you q star is q wall I minus q wall o. 

1 minus r star r star is r i by r o whole square multiplied by a function F 1 minus function 

F 2 and I have given here the values of F 1 and F 2. 

We now define; let us say, in case 1 where q wall o is heated. I will define N u o equal to 

at the outer wall h o D h by k, where the heat transfer is specified and that would be 

equal to q wall r o by k T wall minus T bulk into 2 into 1 minus r star square. 
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This is nothing but for the annulus D h is equal to 2 times r o minus r i and that is what is 

reflected here. So, if I take r i common you will get that. 

With this temperature, you must evaluate the bulk temperature. The bulk temperature 

evaluation becomes extremely difficult because there are logarithmic terms involved and 

numerical integration is the best way out. It does not require too much effort. 
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For case 2, where inner wall is heated that is q wall i is given. The solution can be 

expressed compactly in this fashion r star square by m into 1 over q star plus r star over 

that multiplied by a function F 3 plus all this and F 3 itself is given by a long expression 

like that. These expressions take quite a bit of algebra to arrive at and again in this 

particular case, I will define N u i equal to h i D h by k equal to q wall i r o by k divide 

by T wall i minus T bulk into 2 into 1 minus r. 
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Again using this temperature profile, I must evaluate T bulk which is required here by 

numerical integration. It is very fortuitous that the N ui N uo for variety of radius ratios 

can actually be expressed in the form I have indicated. 

N ui would be equal to N uii into 1 minus theta i by q star and N uo can be expressed as 

equal to N uoo into 1 minus theta naught minus q star, where Nuoo and theta o and Nuii 

and theta i are simply functions of the radius ratio. 

Now, q star was actually equal to q w i divided by q w o is equal to theta i. If suppose 

that was equal to theta i. Then, this gives a odd result that N ui would be equal to infinity 

but that should not worry us because all it implies is that it does not imply infinite heat 

transfer but simply that the inner wall temperature turns out to be equal to the bulk 

temperature. Therefore, N ui goes to infinity. Similarly, if q star is less than theta i then 

N ui will turn negative which implies negative h i. 



Again, as we said repeatedly that this is not a particularly unacceptable situation. All it 

implies is that, since N ui is negative T wall must be greater than T bulk T wall i must be 

greater than T bulk. 

About T wall i must be less than T bulk and as a result the N ui has turned out to be 

negative. Similar arguments would apply to N uo. So values of N uii N uoo theta i i and 

theta o are given on the next slide. 

But to write the previous solutions in this manner, you again have to do little bit of 

algebraic manipulation to show that this theta i and N uii are functions of radius and only 

q wall minus q wall i over q wall o separates out as a function. 
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Here are the solutions that I have present from r star equal to 0, which is itself the 

circular tube and you can see N uii has no meaning but N uoo is 4.364 and its influence 

coefficient is 0 and N uo itself as you can see here. 

Influence coefficient is 0 and N uo would be equal to N uoo. Therefore, that would be 

equal to 4.364. As I go on increasing the inner radius then you can see that the 

coefficients and the N uoo values go on changing. 



When r star becomes 1, you have flow between parallel plates. In these case, both N uii 

and N uoo and theta i and theta o exactly identical. As they should be and our table 

confirms that they turn out to be the same. 

Usually Nusselt numbers are not readily available for annulus but with this method you 

can see now you can evaluate them for any situation, for any q wall i and any q wall o 

that may be prescribed. You can readily recover the solutions for entire family of annulus 

solutions. 
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I will deliberately consider now a problem, in which I am considering flow between 

parallel plates that is the last entry in the table. Let us say, this is q 2 and this is q 1, the 

velocity is fully developed. 

If you read the problem, it is like this. The flow between parallel plates, which are 5 

centimeters apart. Therefore D h will be 10 centimeters and I have said q 1 is equal to 1 

kilowatt per meter square and this is 5 kilowatts per meter square. 
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Since, the flow is fully developed the bulk temperature is rising with x and I am simply 

considering the k x axial position, where T bulk is 30 T bulk is 30 degree centigrade and 

the conductivity of the fluid is point 2 watts per meter kelvin. 

The question is what will be T w 1 and what will be T w 2? That is the question that I 

asked. For example, the solution would run something like this N u1 will be h 1 D h by k 

equal to N u1 1 over 1 minus theta 1 q star. 

If you see the influence coefficient for parallel plates is 0.346, N uii is 5.385 and N u1 

will become 5.385 1 minus 0.346 divide by q star which is 0.2. 

Therefore, the Nusselt number turns out to be negative 7.377 minus 7.377 and the heat 

transfer coefficient will also turn out to be negative minus 14.753. Since, q wall is 1 

kilowatt h 1 is minus 14.753 and T bulk is 30, I can evaluate T w 1 as minus 37.8. So, T 

w 1 evaluates to minus 37.78 degree centigrade. 

What about the outer wall? You can do the same thing N u2 equal to h 2 D h by k equal 

to N u2 2 minus 1 minus theta 2 into q star and again you will see N u2 will turn out to 

be 5.785. In this case, h 2 would be 11.57 and T w 2 turns out to be 462.12. 



You can see what a great temperature difference there is. Basically, you have a situation, 

where very high temperature on this side and a very low temperature on this side. So 

minus 38 here, 462 here and the average temperature is 30 degree centigrade. 

It is for this reason that we are interested in finding out the solutions because the wall no 

wall should become too hot or too cold because it might affect other processes on outside 

or inside of the annulus. 

As much as the bulk temperature is only 30 degree centigrade, the wall temperatures can 

be enormously different for just very small heat fluxes of 1 kilowatt to 5 kilowatt meter 

square. 
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It is for this reason that we take particular care in evaluating our Nusselt number 

accurately in annulus flows. I have turned turn my attention to circular tube heat transfer, 

in which T w is constant and the flow is fully developed. 

You can say that in this particular case, N u sub T means T wall is constant it will be h 2 

R divided by k and that would be equal to d T d r at R into 2 R divided by T wall minus 

T bulk and that should be a constant. 



Because h itself we say the fact that it is fully developed means h is constant and Nusselt 

number is a constant. Then, if you go back to slide 2 and recall that this is the condition 

for fully developed heat transfer for h equal to constant. 

Then, you will see that d T by d x would be simply phi times d T bulk by d x and d T 

bulk by d x would be from heat balance 2 alpha divided by u bar R equal to q d T by d r. 

Remember, k d T d r at R equal to r is simply the heat flux that is coming in and d T bulk 

by d x would be related to d T by d r at the wall. If this was the original equation and if I 

now substitute for d T d x in terms of phi then the equation would transform to this form 

d 1 over r d by d r r star d phi by d r star equal to minus 2 N uT phi into 1 minus r star 

square. This is nothing but a second order ordinary differential equation with a boundary 

condition that phi r star at 1 which is the wall it is equal to 0 phi is 0 and d phi by d r star 

at the axis symmetry is 0 because it is a symmetry line and r star is equal to r divided by 

R. So, this kind of a second order ordinary differential equation is really solve by 

shooting method shooting method as i show you here. 

What one does is that, let us say this is r star and we want d phi by d r star equal to 0. 

The actual value of phi would not matter. All that we want is d phi by d r star equal to 0 

it is a dimensionless quantity and we say d phi by d r star is equal to 0. 
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We assume a value of Nusselt number and solve the ordinary differential equation on a 

computer perhaps and you will come up with a value of phi at r star equal to 1 which is 

the wall, where we want phi star to be 0. 
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If our N u guess was incorrect then the chances are that you will come up with this. So, 

this is N u guess 1. Obviously, it is not equal to 1 as I want it. I take another guess and 

you will see you I may come up with that N ug2 and the error is on the positive side. The 

error here was on the negative side and I can use a bisection method to refine my error 

and generate a solution. Ultimately, I will come up with a value of N, which gives me 

phi at r star equal to 1 equal to 0 which is what I want. 
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So, this is the N u correct. This would be the correct value of N u and if you do that in 

this equation you have to go on assuming a value of N uT and solve the equation. 
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You will see N ut turns out to be 3.656 or sometimes taken as simply 3.66. It is also 

possible to solve this equation analytically in a series form and the solution has been 

given here. 
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Again the value of N uT works out to be 3.656. If I have to do this same problem for 

flow between parallel plates with T wall equal to constant on both sides. Then, the 

Nusselt number that I would develop is a 7.545. So, that I leave you as an exercise to be 

done. 
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We now turn our attention to one more case and that is the case of highly viscous fluids, 

flowing in a tube which is highly viscous; its Prandtl number is much greater than 1. 
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In this case, there is a constant wall heat flux is applied. In that case, you will recall from 

our energy equation that because viscosity is very high viscous dissipation term mu d u 

by d r whole square becomes as important as the conduction term. Therefore, it must be 

retained in the energy equation, u fd is 2 u bar 1 minus r square by R square and d T by d 

x equal to d T bulk by d x is equal to constant, d u fd by d r square from this thing will 

evaluate the 16 u bar square r square by R 4 and substituting these things in here, I get 2 

u bar by alpha 1 minus r square by R square d T bulk by d x equal to 1 over r d by d r r d 

T by d r plus 16 times mu by k u bar square r square divided by R 4 this is equation a2. 

The original equation is a1 and the boundary conditions are again at the axis of 

symmetry, this would be 0. At the wall, it is equal to q wall equal to k d T d r. The main 

thing is I said d T bulk by d x will be constant but what will be its value?  
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That is what we need to evaluate. To do that on the next slide, what I will do is, I will 

simply integrate this equation. You can see the left hand side, if I integrate over area u fd 

and d u fd by d x is equal to 0, because its fully developed u. fd d T by d x will actually 

become d x will actually become d by d x of u fd into temperature and I integrate this d 

by d x of 0 to R u fd T d y. 

Then, you can see this will give me d T bulk by d x because when this is divided by in 

integral 0 to R u fd y d y, I mean d r r d r rather this is the definition of T bulk. 
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This is the constant u bar r d r is nothing but the mass flow rate through the channel or 

through the circular tube. You will see that to determine d T bulk by d x, I would simply 

integrate this equation from 0 to r of both sides of this equation. 
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The left hand side will give me d T bulk by d x. This I will evaluate because I will get r d 

T d y d r at the wall and r d t by d r at the axis, which is 0.  I have substitute q wall, 

which is known for the upper boundary condition. 
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Likewise, you integrate this from 0 to r. The result is d T bulk by d x would turn out to 

be 2 q wall alpha k u bar R, which is the case when there is no viscous heating is 

included but now you see that the bulk temperature rise is also influenced by the amount 

of viscous heating that has taken place. 
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That is the equation a3. If I substitute d T bulk by d x in equation a2, which is this 

equation so if I substitute for d T bulk by d x, I will have an equation which looks like 

this. I must integrate this equation twice and determine 2 constants of integration to 

determine the temperature profile. 
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The temperature profile looks something like this. Remember, again if mu was 0 that is if 

viscous dissipation was neglected then that term would be 0 and here that term will. We 

will recover our original case of solution without viscous heating. Then, the T bulk 

evaluates this temperature must be integrated with u fd and T wall minus T bulk would 

evaluate to 11 by 48 q wall D by k plus mu u bar square by k. 
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Now, it is very easy to define, if I divide both sides by q wall D by k then the Nusselt 

number would be obtained as here 11 by 48 plus mu u bar square divided by q wall d 

raised to minus 1. 

This quantity is called the Brinkman number, after the scientist who first solves this kind 

of a problem. This can be written as 192 divided by 44 by 192 multiplied by Brinkman 

number. 

A Brinkman number is 0; then you would readily recover 192 by 44 equal to 4.364. The 

effect of brinkman number for high Prandtl number fully developed heat transfer 

becomes (( )) higher the brinkman number depressed would be the heat transfer 

coefficient 

I consider the case of liquid metals, when Prandtl number is very small. As you will 

recall, for liquid metal the Prandtl number is less than 0.01. 
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The actual conduction term, which we have been neglecting so for becomes important, 

particularly when the wall temperature is constant; you have liquid metal heat transfer. 

Then, the governing equation would look as I have shown here. 
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There will be the radial conduction term and the axial conduction term equal to u fd by 

alpha d T by d x. Now, this is a 2 dimensional equation it involves dependent variables r 

and x. 

It can be solved analytically or now a day’s much more simply by finite difference 

method. I give below the finite difference method solutions for different values of Peclet 

number. I wanted to appreciate how Peclet number comes about. 
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So, the governing equation is 1 over r d by d r r d T by d r plus d 2 T by d x square equal 

to u fd divided by alpha d T by d x. Now, if I define x star is equal to x by R and r star is 

equal to r by R. Then, you will notice that this will become simply 1 over r star d by d r 

star into r star d T by d r star plus d 2 T by d x square R star square and equal to u fd by 

alpha d T by d x star into R. 

You will see that this this becomes sorry there would be 1 over R star here also. if I 

multiply through by r star r square. Then, you will see this becomes d by d r star into r 

star over d T by d r star plus d 2 T by d x star whole square is equal to u fd R divided by 

alpha d T by d x star. 

What is that? u fd into R divided by nu into nu divided by alpha. If I do that, then you 

will see that, this is Reynolds number divided by 2 and this is Prandtl number nu divided 

by r the product of Reynolds and Prandtl is called the Peclet number. 

This is essentially the Peclet number divided by 2 d T by d x star. Therefore, the equation 

can be written as Peclet number into 1 over r star d by d r star r star d T by d r star and so 

on and so forth. 
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The Peclet number essentially determines the behavior of the solution. I have obtained 

this, remember because Prandtl number is so low the product of Reynolds and Prandtl 

can be very low in laminar flow. 



So, I have taken values of 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0, 7.5 and 10 and obtain solutions 

by finite difference method and here are the solutions of very low Peclet number. The 

Nusselt number is 4.057 but as I increase the Peclet number, which means allowing for 

more and more actual conduction, then you will see that this becomes even more the 

Nusselt number goes on reducing, when Peclet number is about 10 and the wall 

temperature is constant; so a large Peclet numbers the actual conduction effect goes on 

almost becoming negligible and you arrive at 3.85. 

In effect as Peclet number tends to 0, you get only constant heat flux solution. So, N u 

equal to 0.364 and as Peclet number tends to infinity you get the constant wall 

temperature solution 3.667. 
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There is yet another case of considerable interest, which you might like to know and this 

is the case of a tube, which may be receiving let us say radiant heating. Then, clearly 

around the circumference it will have a variable heat flux q wall theta; although, axially 

it will be constant. At each cross section q bar will be simply 0 to 2 pi 1 over 2 pi q wall 

d theta would be a constant with x. So, this is the case which would occur for radiant 

heating. 



Sometimes, it will also occur for a tube of uneven thickness and it is being electrically 

heated. So, there is internal heat generation within the tube and therefore it will receive 

circumferentially varying heat transfer. 
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In that case, because of the constant heat flux condition, the equation would become 

again d T bulk by d x would be constant given by that and but now you must allow for 

conduction both radially as well as in the circumferential direction. Again this 2 D 

equation can be solved either analytically or by finite difference method and for q wall 

theta as this simple circumferential variations of heat flux. 

The solution turns out to be this 1 plus b cos theta 11 by 48 0.5 b cos theta, where b is 

simply a parameter. You can see, in this case N u theta along the periphery of the Duct 

can assume both positive as well as negative values but that should not disturb you 

because that is expected. All it tells you is whether the T wall bulk is greater than T bulk 

or less than T bulk but if b is equal to 0 which implies q wall theta is uniform along. 

Then, you readily recover 4.364 and that is what we had. So, this particular type of 

problem is very important because hot spots have to be avoided on walls, when you have 

uneven heating on all the side. 

In the next lecture, we shall consider heat transfer in non-circular and arbitrary section 

Ducts. Thank you. 


