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So, good afternoon and let us begin. Just to recap the last time we saw some other consequences 

of the Gersgorin Disc theorem and then we started discussing about perturbation location and 

perturbation of Eigen values namely that the eigenvalues of a matrix change when the matrix is 

perturbed. And so the starting point is that we are given a matrix A of size n cross n and it has 

Eigen values lambda 1 lambda 2 up to lambda n.  

And this matrix A is getting perturbed by a matrix E to get the matrix A plus E and suppose we 

compute the eigenvalues lambda hat 1 up to lambda hat n or in particular if some Eigen value is 

lambda hat what can we say about how close lambda hat will be to one of the eigenvalues of the 

matrix A that is can we say something about lambda hat minus lambda i modulus value for some 

i that is will is value be small for some one of the Eigen values of A and the various ways to 

answer this question.  

First of all, if A happens to be a diagonal matrix, if A happens to be a diagonal matrix, then we 

can simply directly use the Gersgorin Disc theorem to say that this difference between lambda 

hat and one of the Eigen values is at most the L infinity norm of E, this is what we saw the last 

time. And the other case is when lambda is a simple Eigen value of A, meaning that it has an 

algebraic multiplicity equal to 1.  

Then if we denote x to be the left Eigen, sorry the right eigenvector corresponding to lambda that 

is Ax equals lambda x and y to be a left eigenvector corresponding to lambda that is y Hermitian 

A equals lambda y Hermitian, then if E is a perturbation matrix such that its spectral norm equals 



1, then, if we denote A of t to be A plus t times E, then we can study what happens to the, how 

sensitive the Eigen values of A by looking at the modulus of the derivative of the eigenvalue at t 

equals 0.  

So, we showed that this is less than or equal to 1 over S of lambda, where S of lambda is defined 

to be the magnitude of y Hermitian x and S of lambda we call it the condition number or the 

condition of the eigenvalue lambda. So, this is for simple Eigen values. So, it is an Eigen value 

of A with algebraic multiplicity equal to 1.  

Then we looked at the case where A is diagnosable matrix and E can be anything that means A 

can be written as S lambda S inverse for some invertible matrix A S and a diagonal matrix 

lambda. Then we showed that lambda hat minus lambda i is at most K of S times the norm of E 

for some i, where this norm is any matrix norm such that the norm of a diagonal matrix is the 

maximum magnitude diagonal entry in the matrix.  

And K of S here is the condition number of this matrix S with respect to this norm used here, of 

course, if condition number is greater than or equal to 1 and it is equal to 1 when S is unitary. So, 

if the matrix is unitary diagnosable, then we have that lambda hat minus lambda i is less than or 

equal to norm of E itself, so this K of S is equal to 1. And so then normal matrices are unitarily 

diagonalizable.  

So, as a consequence if A is a normal matrix and E is arbitrary, then we have that lambda hat 

minus lambda i is at most be here we taken the spectral norm of E for some eigenvalue lambda i 

of A. The next one is that suppose A and E are both Hermitian symmetric matrices. Then, if we 

denote lambda 1 to lambda n to be the ordered Eigen values of A and lambda hat 1 through 

lambda hat n to be the ordered Eigen values of A plus E, then we can lower bound lambda had k 

minus lambda k.  

So, this is taking the kth largest Eigen value of A plus E and subtracting the kth largest Eigen 

value of A itself and that is at least equal to lambda 1 of E and at most equal to lambda n of E 

and further this magnitude of this difference is at most the spectral radius of E. So, this is where 

we stopped the last time.  
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Now, we consider one more case where A and A plus E are both normal matrices. What that 

means is that we can write A as U lambda u Hermitian and A plus E as V lambda V Hermitian 

where U and V are both unitary matrices because normal matrices can be unitary diagonalized.  

Now, if we look at the Frobenius norm square E2 square then that is the Frobenius norm square 

of A plus E minus A which I can write as U lambda hat u Hermitian just substituting for A plus 

E and minus U lambda U Hermitian just substituting for A Frobenius norm square and what I 

can do is since the Frobenius norm square of a unitary matrix is no.   

So, I can pull out U on the left and the U Hermitian on the right and since the since 

multiplication by left or right multiplication by unitary matrix does not change the Frobenius 

norm of a matrix I can get rid of U and U Hermitian and write it as the norm of Z lambda hat Z 

Hermitian minus lambda square, where Z which is equal to U Hermitian V is a unitary matrix.  

So, norm, this is a unitary matrix and this Frobenius norm square we know that it can be written 

as trace of so, Frobenius norm squared of a trace of A A Hermitian so, I just write that here. So, 

this is trace of Z lambda hat Z Hermitian minus lambda times the Hermitian of this, which is Z 

Hermitian Hermitian is just Z lambda hat Hermitian z Hermitian minus lambda Hermitian.  

If I just expand this out, this gives me this times this which is just the Frobenius norm of Z 

lambda hat Z Hermitian square and then this times this is just the Frobenius norm of lambda 

square minus 2 times trace of the inner product between this and this, which is Z lambda hat Z 

Hermitian times lambda Hermitian.  



Now, again this is multiplication by a unitary matrix so, I can get rid of this Z on the left and Z 

Hermitian on the right and write this as lambda hat 2 square plus lambda 2 square minus 2 real 

part of trace of this matrix the same as the previous equation. So, what are we trying to do here 

we are trying to see how relate this E2 square to the Eigen values of A and A plus E, so that we 

can ultimately bound E2 square.  

So, for example, here you can already see that, this Frobenius norm squared, this is just a 

diagonal matrix. So, it is just the sum of the diagonal entries squared. This is also a diagonal 

matrix. So, it is just the sum of the diagonal entries square and then this time I will come to that 

in a sec. But the point is that on the right hand side, I have terms that depend only on the Eigen 

values of A and A plus E.  

And if I can find an expression for this quantity, which only depends on the eigenvalues of A and 

A plus E, then now I will have a upper bound, which connects Eigen values of A and A plus E 

with the Frobenius norm squared of the error matrix or the perturbation matrix. So, that is the 

final goal is to find some expression for this quantity, which depends only on lambda hat and 

lambda i.  

Now, this quantity itself is as something whatever it is, but if I replace it with something bigger 

than I am only making this whole expression smaller, so I can say that it is greater than or equal 

to these two terms minus a quantity G star, where I define G star to be the maximum that this can 

attain over all possible unitary matrices Z.  

So, G star is the max of this thing 2 real trace of W lambda hat, W Hermitian lambda summation 

over all matrices W which are unitary. Now, if I simply expand this out and take into account the 

fact that lambda and lambda Hermitian are both diagonal matrices, I can write this 2 real trace of 

W lambda hat W Hermitian lambda Hermitian as the summation over i, j going from 1 to n of the 

modulus of Wij square times the real part of lambda i star times lambda j hat is there a question. 

So, this is like this.  

Now, suppose we define a matrix C with entry Cij, Cij is equal to this quantity this coefficient of 

this term here. Now, what is this matrix C it has non-negative entries and if you take the sum of 

the rows the entries in any given row or the sum of the entries along any given column, they all 

add up to 1 because W is a unitary matrix, such a matrix is called a doubly stochastic matrix and 



a matrix with non-negative entries where every column adds up to 1 and every row adds up to 1 

is called a doubly stochastic matrix.  

And so, what we see is that whenever W is unitary then this matrix C will be a doubly stochastic 

matrix. However, the converse may not be true in the sense that if I take C which is doubly 

stochastic, it there may not exist a unitary W such that mod Wi squared is this doubly stochastic 

matrix.  

So, if I replace the maximisation over W with maximisation over all matrices C which are 

doubly stochastic, then I am only expanding my potentially expanding my space expanding the 

space which I am doing this optimization. So, this is further upper bounded by the maximum of 2 

Cij. So, Wij squared is equal to Cij times this real part of lambda i star times lambda j hat over 

all possible doubly stochastic matrices.  

Now, this objective function is linear in this matrix and the entries of this matrix C and further 

you know a linear function is both a convex and concave function of these variables. And so, as a 

consequence this is this amounts to maximising a convex function over the space of doubly 

stochastic matrices.  

So, in order to solve this optimization problem, we need to know something about this constraint 

space what is the space of doubly stochastic matrices. So, let us precisely define that. So, 

suppose Ds is the set of all doubly stochastic matrices. It is a small exercise to show that Ds is a 

convex set that is you take any two doubly stochastic matrices and if you take a convex 

combination of those two matrices you will get a doubly stochastic matrix.  

So, you can show this very easily. So, the set Ds is actually convex. Now, we use one very 

fundamental result from optimization that the maximum of a convex function over a convex set 

is always attained at what is called an extremal point of the convex set. Similarly, if you want to 

minimise a concave function over a convex set the minimum will occur at an extremal point of 

the convex set.  

So, just to give you the idea suppose I have a convex function like this and if I have a convex set 

in on this real line which is an interval and if I want to in fact, if I want to maximise this convex 

function over this convex set then the maximum will occur at an extreme point this is also true if 

I take a convex function that looks like this for instance.  



The maximum will be either this point or this point depending on which one is higher the 

minimum could be at some point inside but the maximum will always be at an extreme point of 

the convex set.  So, then what is extreme point is like the endpoints of the convex set but the 

generalisation is as follows.  

So, if D is a convex set on some defined on some vector space, we say that x a point x in D is an 

extremal point or an extremal point of D if there is no lambda 1 lambda 2 greater than 0, which 

add up to 1 and x1, x2 belonging to D such that lambda 1 x1 plus lambda 2 x2 is equal to x.  

In other words, you cannot find two points that are internal to the set D where if you take a 

convex combination of those two points you will get this point x. So, that you can see that from 

this interval also, if I take either this point or this point I cannot write this as write this point or 

this point as a convex combination of two points that are internal to this convex set.  

Whereas, if I take a point here I can write it as a convex combination of these two extreme 

points, so, this is not an extreme point. So, for example, in two dimensions if I have a polygon 

like this then the corners of the polygon are all extreme points or if I have a circle in two 

dimensions like this the entire boundary of the circle is a are extreme points.  

So, the solution to this to this optimization problem will be at one of the extreme points of this 

convex set. So, all we need to do is to identify what are the extreme points of this convex set, 

substitute those extreme points and then pick the best the highest value we can get. So, we need 

to understand what would be the extreme points of this particular convex set.  
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So, the extreme points of this convex set are actually given by a theorem, which is known as 

Birkhoff’s theorem or the Birkhoff’s Von Neumann theorem. This is one of the this is a theorem 

I will not be proving in the class, it is a little digress too much from what we want to do plus 

where we do not have time to prove this theorem here.  

But basically what it says is that the set Ds is the convex hull do not worry about if you do not 

know what this convex hull means, is the convex hull of the set of n cross n perturbation 

permutation matrices and the external points of Ds are precisely these permutation matrices that 

is the punchline.  

The extremal points of Ds are precisely the permutation matrices. So, basically, if C is a doubly 

stochastic matrix, then there exists in n less than infinity, alpha 1 to alpha n non-negative and 

adding up to 1 and permutation matrices P1 to PN such that you can write C to be alpha 1 P1 

plus et cetera up to alpha N PN.  

So, any doubly stochastic matrix can be written as a convex combination of permutation 

matrices, that is the punchline and these permutation matrices are essentially vertices of this 

convex set Ds. In fact, some side notes here that there is another famous theorem called 

Caratheodory’s theorem, which says that you can choose N to be at most n squared minus 2n 

plus 2, that is n minus 1 the whole squared plus 1.  

So, while there exist n factorial permutation matrices so size n cross n, we do not need to use all 

n factorial permutation matrices to decompose a given doubly stochastic matrices we can make 



do with at most n squared minus 2 plus 2 matrices. And further does this decomposition is not 

unique there are there various ways in which you can decompose if I go back to this example 

here.  

So, if I take a point over here, obviously, you know, I can write this as a convex combination of 

these extreme points in multiple ways. For example, I can take these three points and find a 

convex combination get me here or I can potentially take these three points and write it as a 

convex combination of these three points and so on. So, there is no unique way to do it. But in 

this case, you can see that for any point I can take, I can reach any point by taking a convex 

combination of three points.  

So, when n equals 2 what happens to n squared minus 2n plus 2 n squared 4 minus 4 plus 2 in 

fact, two points are enough that is what Caratheodory’s theorem says, but this is not this, this is 

not the convex set corresponding to permutation matrices. So, if you look at the two cross two 

doubly stochastic matrices, you can write any two cross two doubly stochastic matrix as a 

convex combination of at most two permutation matrices.  

So, then what is a permutation matrix it is basically a square binary matrix with exactly 1 entry 

equal to 1 in every row and 1 entry equal to 1 in every column and 0’s is everywhere else and we 

have also seen these matrices previously we know that PA permutes the rows of A and AP 

permutes the columns of A.  

So, now if we use this Birkhoff’s theorem, then there exists a permutation matrix P that solves 

this optimization problem, because these, the solution to this optimization problem is an extreme 

point and the extreme points are all permutation matrices.  

So, for that permutation matrix, we go back to the earlier way of writing this expression, and we 

write it as 2 times real part of trace of now, P is a permutation matrix, so, P lambda hat P 

transpose because it is zeros and ones you do not need a Hermitian there times lambda Hermitian 

and now P lambda hat is a permutation of the columns P transpose lambda hat Hermitian is a 

permutation of the rows of lambda Hermitian.  

Now, so, if Pei is equal to e of sigma i, so, sigma i represents the permutation. So, basically what 

it is saying is that the index i is getting mapped to index sigma i, that is what this permutation 

matrix is doing. So, there are different ways of writing out a permutation matrix one is to write it 



as a matrix and the other is to specify this sigma of i the permutation function, which maps 

indices i equal to 1 to n 2i equal to 1 to n.  

So, if we do this and then we substitute that into this expression, you can actually simplify this 

formula to this expression here. So, we now see that what we are left with is just lambda i star 

times lambda hat of sigma i. So, it is just products of permitted versions of lambda hat. So, thus 

what we have shown is that this E2 squared, the l2 norm of E square is lower bounded by the 

summation i equal to 1 to n lambda hat of sigma of i square.  

So, it was lambda hat i squared earlier, but sigma of i is just a permutation. So, all the entries will 

get included if I use sigma of i instead of i itself. So, this is also okay plus the summation i equal 

to 1 to n lambda i square minus 2 times the real part of sigma hat of lambda hat of sigma of i 

times lambda i star.  

Now, this expression here is nothing but the modulus of lambda hat of sigma of i minus lambda i 

squared added up i equal to 1 to n. So, now, this is beautiful, because, I am now shown that this 

quantity here, which is the sum of the squared differences of the eigenvalues of A and A plus E 

these are the eigenvalues of A these are the eigenvalues of A plus E but written in some other 

order sigma of i, this sum is at most equal to the Frobenius norm squared of E.  
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So, what we have shown is what is it is known as the Hoffman Weilandt theorem, which says 

that if A and E are both n cross n matrices A and A plus E both being normal matrices and 

lambda 1 to lambda n and lambda hat 1 to lambda hat n are the eigenvalues of A and A plus E 

respectively and in some order, then there exists a permutation sigma of i of the integers 1 to n 

such that summation i equal to 1 to n lambda hat of sigma of i minus lambda i squared is at most 

the norm of E squared.   

So, basically what this theorem does is to show that there is a strong global stability, it is strong 

because it just depends on E2 square and it is global because it does not matter which E you pick 

even if you choose adversarially this thing is at most E2 square and these are stable to stability of 

the set of Eigen values of a normal matrix. So, this is one more result that we have about the 

perturbation of eigenvalues of a matrix.  

So, if A not diagonalizable, we seem that we can find a formula for perturbation of algebraically 

simple Eigen values and we can also do one other thing, which is that we can approximate A 

arbitrarily by a diagonalizable matrix, so we can approximate this matrix A arbitrarily closely by 

a diagonalizable matrix and then everything we said about diagonalizable matrix are is 

applicable and we can then say something about how the matrix A will get perturbed. 

What we mean by we can approximated arbitrarily closely by a diagonalizable matrix is 

something we have already seen before. So, I will just state that to recall what we said. So, A is 

an n cross n matrix and so suppose this is any norm then given epsilon greater than 0 there exists 



a matrix A1 say to the n cross n such that A1 has n distinct eigenvalues and A minus A1 is 

actually less than or equal to epsilon.  

In fact, you can even make this strictly less than is that most epsilon and a corollary to this the 

set or matrices is dense. So, given a matrix A when say to the n cross n, I can find a diagnosable 

matrix which is arbitrarily close to this matrix A. So, it is useful because one useful way of 

approaching perturbation related problems is to first solve for diagonal matrices, then solve for 

diagnosable matrices and then use the approximation and some limiting process to say something 

about what happens in the non-diagonalizable case.  


