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Some of the eigenvalues. So, there is a close connection or appears to be a close connection 

between the diagonal entries of a matrix and the eigenvalues. What is the precise relationship 

between these two? Or can we be a bit more specific, other than saying that they are both real 

valued and they have the same sum, can we be more specific about the relationship between 

these two sets of real numbers and this notion is what is called majorization. So, we will define 

this notion now. 
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By the way, the word majorization also appears in the context of optimization, but that is a 

different notion do not get confused this is a notion of majorization that we are defining here in 

linear algebra. So, let alpha in R to the n and Beta in R to the n be given. If their elements are 

arranged in increasing order meaning that alpha j1 less than or equal to alpha j2 less than or 

equal to less than or equal to alpha jn. 

So, these are the indices where the j1 is the index in alpha for which the corresponding entry in 

alpha has the smallest value and j n is the index for an entry in alpha where the corresponding 

entry of alpha has the largest value and similarly beta. So, beta say m1 less than or equal to beta 

m2 less than or equal to beta mn and if the summation i equal to1 to k beta mi is greater than or 

equal to sigma i equal to 1 to k alpha ji for every k equal to 1, 2, up to n and if equality is 

satisfied at k equal to n, then beta is said to majorize alpha.  

The vector beta majorizes is alpha is in the sense that it is, we say that beta is kind of greater than 

or equal to alpha, if the sum of the k smallest entries in beta is greater than or equal to the sum of 

the k smallest entries in alpha. And this holds for k equal to 1, 2 all the way up to n minus 1, and 

the sum of the entries are equal.  
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So, for example, this vector 1, 2, 3, 4 majorizes 0, 1, 2, 7. So, this number is bigger than this 

number, 1 plus 2 is 3 is bigger than 0 plus 1, 1 plus 2 plus 3 is 6 is greater than 0 plus 1 plus 2, 

which is 3. But the sum of all these guys is 10. And the sum of all these guys is also equal to 10.  

So, equality is met when you add up all the entries together. But I do not need these to have been 

arranged in increasing order like this. If I had written it like this 4, 3, 1, 2 this majorizes. And I 

do not need this to have been written in increasing order 1, 2, 7, 0. I can write it like this also. So, 

these two vectors, but of course, it is possible that two vectors that have the same sum still do not 

majorize each other.  



This is a very special structure not all vectors can be ordered like this. So, this is the notion of 

majorization. So, we have the following result. So, A is in C to the n cross n Hermitian. Then the 

vector of diagonal entries of A majorizes the vector of eigenvalues of A. That means that if I take 

the smallest diagonal entry of A, that will still be greater than or equal to the smallest eigenvalue 

of A, if I take the sum of the two smallest diagonal entries of A that will be greater than or equal 

to the sum of the two smallest eigenvalues of A and so on. So, let us quickly proof this.  

So, you can see this is very interesting and again what I consider a very counter intuitive result. 

That you will be able to find such a very interesting relationship between the diagonal entries of 

A matrix and the eigenvalues of A matrix. So, the proof goes by induction. So, induction 

meaning will look at the size of the matrix and use induction over the size of the matrix. When I 

take n equals 1 the if you take a scalar that is equal to the diagonal entry is also equal to the 

eigenvalue and so there is nothing to proof. 

Now suppose this result holds for all matrices of size k cross k and k going up to n minus 1. I 

know we need to show that the result holds for k equal to n. Now, we need to show that this 

result holds for n. So, A be a n cross n matrix. We are given matrix. Now, consider the matrix A1 

which is obtained by deleting a row and column and for A1 this result holds by our induction 

hypothesis, how do I get A1. 

I get it by be obtained by deleting the row and column. Corresponding to its largest diagonal. So, 

find out which is the largest diagonal entry of A and that row and column I delete and I call the 

matrix A1. So, now if you are (())(09:46), you are already seeing how this proof will go. So now 

the A1 is obtained by deleting a row and column and so we will use the interlacing result. 
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So let lambda 1 less than or equal to less than or equal to lambda n be the eigenvalues of A and 

lambda dash 1 less than or equal to lambda dash n minus 1 be the eigenvalues of A1. Now, by 

the induction hypothesis. First of all, let us say a i1 i1 less than or equal to a i2 i2 less than or 

equal to etcetera less than or equal to a in, be the diagonal entries of A.  

We obtained A1 by deleting the row the in inth, row and column of the matrix A. Now, by the 

induction hypothesis summation i equal to 1 to k aij ij. So, the diagonal entries arranged in 

increasing order of the matrix A is the same as the diagonal entries of the matrix A1 arranged in 

increasing order. So, I can write aij ij here.  

This is greater than or equal to sigma j equal to 1 to k lambda dash j and this is true for k equal to 

1 through n minus 1 this is just directly from the induction hypothesis. Now, from the interlacing 

theorem, we have that lambda 1 is less than or equal to lambda 1 dash is less than or equal to 

lambda 2 less than or equal to lambda 2 dash less than or equal to etcetera up to lambda dash n 

minus 1 is less than or equal to lambda n.  

So, that means that if I am taking the first k guys here. Instead, if I add a lambda 1 through 

lambda k, I will get a each of these lambda 1 dash is greater than or equal to lambda 1 lambda 2 

dash is greater than or equal to lambda 2 and so on. So, I can write sigma j equal to 1 to k lambda 

dash j is greater than or equal to sigma j equal to 1 to k lambda j and this is true for k equal to 1 

all the way up to n minus 1.  



And so, this inequality continues to hold with lambda j this summation j equal to 1 to k lambda j 

sitting here. So, sigma j equal to 1 to k aij ij is greater than or equal to sigma j equal to 1 to k, 

lambda j. And this is true for k equal to 1 through n minus 1. But equality certainly holds 

because the trace equals the sum of the eigenvalues. So, that is it. 

So, the what we have shown is that the vector of diagonal entries of a matrix A majorizes the 

vector eigenvalues of a matrix A and this, we use this interlacing property. It is an essential 

ingredient in showing such results.  
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Now, majorization is actually very useful in expressing the relationship between the eigenvalues 

of the sum of a matrix and the individual components. So, for example, if you recall, we have 

seen results like lambda k of A plus lambda 1 of B is less than or equal to lambda k of A plus B 

is less than or equal to lambda k of A plus lambda n of B.  

So, the kth eigenvalue of the matrix A plus B is at least equal to the k eigenvalue of A plus the 

smallest eigenvalue of B and at most equal to the kth eigenvalue of A plus the largest eigenvalue 

of B and if B is positive semi definite then this is non-negative, so, we have lambda k of A is less 

than or equal to lambda k of A plus B and you also have that lambda j plus k minus n of A plus B 

is less than or equal to lambda J of A plus lambda k of B.  

So, these are some results that we have seen earlier. So, in this context we have two more results 

that am just going to state because we do not have time to do the proofs right now, but these are 



results that talk about majorization type relationships between eigenvalues of the summands to 

the eigenvalues of the sum of the of two matrices. So, the first result is the following.  

So, A, B are n cross n Hermitian symmetric matrices So, let lambda of A be a vector and its 

entries are lambda i of A and lambda of B be the another vector whose entries are lambda i of B. 

Similarly, lambda of A plus B is a vector with lambda i of A plus B as its entries and so, these 

denote column vectors in R to the n with components equal to the eigenvalues of A B and A plus 

B arranged in increasing order. This is very important. They are arranged in increasing order. 
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Then the vector lambda of A plus B majorizes lambda of A plus lambda of B and so, that is one 

result. So, it talks about more precise relationship between the eigenvalues of A plus B and the 

eigenvalues of A and the eigenvalues of B, but what you have to do is to arrange the eigenvalues 

of A and B in increasing order and then add them together then this vector of eigenvalues of A 

arranged in increasing order majorizes the vector of lambda of A plus lambda B then we also 

have the following Converse result.  

So, let n be at least equal to 1 and let a1 less than or equal to a2 less than or equal to up to an and 

lambda 1 less than or equal to lambda 2 lambda n. So, imagine that these are some diagonal 

entries and these are some eigenvalues and suppose that this vector majorizes vector lambda 

which has lambda i as its entries then there exists a real symmetric matrix A equal to aij being its 



entries in R to the n cross n such that aii equal to ai, i equal to 1 to n. So, it has ai as its diagonal 

entries. And lambda i is the set of eigenvalues of A.  

So, given a set of numbers real numbers, which where one set of real numbers, majorizes the 

other set of real numbers then you can find a matrix A such that the vector A are the contains, the 

vector A forms diagonal entries of this matrix and the vector lambda forms the eigenvalues of 

this matrix. So, there is always such a matrix that you can find. So, that is all I wanted to say 

today. We will continue on Monday. 


