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So, then the one small point is, so in order to solve the pivoted system. So, recall that goal 

was to solve Ax equals b in some computationally efficient manner. So, what we will do is, 

so if we have Lu equals PA pi then since PP transpose equals P transpose P, this is a property 

of permutation matrices, is the identity matrix that a similar thing holds for pi. That means 

that if I pre multiply by P transpose, sorry P transpose Lu pi transpose is equal to this matrix 

A. 



And so, I will use that here, P transpose Lu pi transpose x equals b. And so, what we will do 

is, we will set y equal to u pi transpose x, and z equals pi transpose x, then we solve Ly 

equals Pb. So, I am multiplying this by P, then we saw uz equals y. And finally, we compute 

x equals pi z. 

So, basically if rows of A are pivoted, then the corresponding entries of b must be exchanged. 

So, that is what Pb does. If columns of A are pivoted, then the corresponding elements of x 

have to be exchanged. That is what pi z does. So, this is how you solve the pivoted system. 

Now, the last point that we have not discussed is, what happens if A is rank deficient. 
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So, the point is that the pivot elements are guaranteed to be non-zero only if A is not rank 

deficient. If A is rank deficient, then the pivot element will go to 0 at some point. And so, if 

rank of A equals R, which is less than n, then at the beginning of the r plus 1th step, will have 

A r of rows r plus 1th through n, and columns r plus 1 through, n will become the all 0 

matrix. 

And so, then, we can simply set Pk equals pi k equals Mk equals the identity matrix for k 

equal to r plus 1 all the way up to n. So, once we see that this sub-matrix becomes the all 0 

matrix, we do not have to do any more Gaussian Elimination steps. So, can terminate 

Gaussian Elimination after r steps, and we will get PA pi equals matrix that is a Lu, but it is 

L11 which is going to be r cross r, 0, L21 which is of size n minus r cross r, and then I n 

minus r times U11 which is again of size r cross r, U12, 0 which is of size n minus r cross r 

and then 0 which is a size n minus r cross n minus r. 



So, this is the kind of form you will get. So, in fact, this can be used to find the rank of a 

matrix. But in practice, you will need to have a threshold on the entries of this matrix to 

decide when you are going to call it the all 0 matrix. So, this is the, I think these things will 

become very easy to, I mean very clear to you if you were to try to do these Gaussian 

Elimination steps using rank deficient matrix. So, pick your favourite 3 cross 3 or 4 cross 4 

matrix, make it rank deficient. 

So, for example, write down three arbitrary columns and then write a fourth column which is 

the sum of those three columns or something. Now, it becomes a rank deficient matrix and 

then try to execute the Lu decomposition on it with pivoting and you will see the, see that 

they will be after r steps, this submatrix will go to 0 and so you can stop the Gaussian 

Elimination there. 

So, what we just discussed about pivoting is called the full pivoting algorithm, it gives you 

maximal numerical stability because at each stage it is pulling the biggest magnitude entry in 

Akk of r minus 1, sorry, A22 of k minus 1 and putting that to be the top left entry. Now, but 

then that is also maximally numerically expensive to compute because you have to compare 

at least. So, Akk, sorry A22 of k minus 1 has n minus k plus 1 is of size n minus k plus 1 

cross n minus k plus 1 so that many entries need to be compared in magnitude. 

And you need to find the biggest entry, find its location, and then do a row and column 

exchange. So, as far as numerical computation is concerned, this increases the computational 

complexity of the Gaussian Elimination. However, I mean so people also sometimes do 

partial pivoting where for example, you may only perform row operations. In that case, you 

will have the T matrices as discussed above, but you will not have the pi matrices, you will 

not do the column exchanges, this can reduce the number of comparisons required. And of 

course, there are cases where pivoting is not required. 

So, for example, in what are called diagonally dominant matrices, matrix is diagonally 

dominant if the magnitude of the diagonal entry is bigger than the sum of the magnitudes of 

all the off-diagonal entries in the same row or the same column. Then such matrices are 

called diagonally dominant matrices. And for such matrices, pivoting or row and column 

exchanges are not required. 

Or in other words, even if you did that, it would just return PK equals the identity matrix and 

pi k equals the identity matrix each time, so you do not have to do those comparisons. So, in 

some cases, pivoting is not required. So, this is kind of an area in itself on how to efficiently 



compute the Lu decomposition, there is a lot one can say. But for the purposes of this course, 

I think this is for you to get an idea of how it is in work, how it is done, and what it is, is 

sufficient. There are a few other useful modifications of this Lu decomposition that one often 

considers, so I will allude I mean highlight them a bit here. 
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Modifications to the Lu decomposition. So, the first is what is called the LDM 

decomposition. It is also often called the LDM transpose decomposition. This, can be done if 

there are no 0 pivots that are encountered in the Gaussian Elimination process. Because if you 

encounter a zero pivot, it does not mean you can stop there, you can stop there only if this 

entire matrix Ar of r plus 1 through n and r plus 1 through n, that sub-matrix of Ar is all 

zeros. 

But if the pivot element is 0, then you have to do some row and column exchanges to bring a 

non-zero entry to the r plus 1 comma r plus 1 entry and then you can proceed with the 

Gaussian Elimination. But if no-zero pivots are encountered in the Gaussian Elimination 

process, then there is a unit lower triangular L and M, both are unit lower triangular. That is 

why we write it like this as M transpose and diagonal D such that A is equal to LDM 

transpose. 

So, essentially, what we are doing here is, since A is equal to Lu, what we can do is this, this 

exists, so we let u is equal to D times M transpose where dii equals uii. What this is doing is, 

each row of M transpose is equal to the corresponding row of u divided by this element uii. 

So, it is just extracting the diagonal entries and pulling them out, and writing it is D times M 

transpose. 

So, this gives you a decomposition of this form, where L and M are both unit lower 

triangular. So, then, if you were to again if you had to solve a Ax equals b, then you have 

LDM transpose x equals b. So, what we will do is, we will let y be this part here, DM 

transpose x and solve Ly equals b, then let z equals this part here, M transpose X and solve 

Dz equals y. 



This is a diagonal matrix, so this is easy to do. And third step is to solve M transpose x equals 

z and obtain z, obtain x. So, and in particular, if the matrix is symmetric, then you can 

actually have a decomposition of the form LDL transpose decomposition for symmetric 

matrix. So, the idea is that if A in R to the n cross n is symmetric and non-singular, then L 

equals M. So, LDM transpose becomes LDL transpose. 

So, this is not hard to see. So, since A equals LDM transpose that means that M inverse times 

A times M to the minus transpose is equal to M inverse L times D. I just pre-multiplied by M 

inverse and post multiplied by my M inverse transpose and these are unit lower triangular 

matrices. So, there inverses always exist. So, this is M inverse LD. Now, M is lower 

triangular, so M inverse is also unit lower triangular. 

So, M inverse L times D, D is diagonal. And so, this whole thing is still lower triangular. And 

A is symmetric, so M inverse AM inverse transpose is symmetric. Now, the only way a 

symmetric matrix equals a lower triangular matrix is if it is a diagonal matrix. So, M A M 

minus transpose is diagonal and if you call it some D dash then you can take M times that, 

and then M transpose multiply on the right and you see that A is equal to LDL transpose, 

(())(16:50) that form. 

So, basically D is diagonal and non-singular. And so, we just showed that M inverse LD is 

diagonal which implies M inverse L is also diagonal. But M, hence M inverse and L are unit 

lower triangular, which implies that M inverse L is unit lower triangular. But if it is lower 

triangular, the only unit lower triangular matrix, unit lower triangular matrix that is also 

diagonal is the identity matrix. So, that means that M inverse L equals the identity or M 

equals L. 

So, basically the decomposition is of the form LDL transpose. We stop here for today. And 

the next class I will continue with another closely related decomposition called Cholesky 

decomposition and that is applicable to positive definite matrices, positive definite Hermitian 

matrices, and that will lead our way into a detailed discussion of Hermitian symmetric 

matrices and positive definite matrices, which will occupy several weeks of further lectures. 


