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So, normal  matrices are, I mean do not get fooled by the name. It is just the property. It has 

nothing to do with in some sense the matrix being normal or in any way related to the Gaussian 

distribution. So, the definition is like this. A in C to the n cross n is normal if it commutes with 

its conjugate transpose. Any matrix for which this is true is called a normal matrix. Normal 

matrix is a generalization of unitary, symmetric and Hermitian matrices.  

For example, for a real symmetric matrix symmetry such that A transpose equals A. And if it is 

real symmetric then A transpose equals A then A A Hermitian is same as A A transpose. But A 

transpose equals A. So, this is equal to A square. This is also equal to A square. So, it holds for a 

real symmetric matrix. Similarly for the Hermitian matrix this equality holds. And as a 

consequence all such matrices unity matrix, symmetric matrix or Hermitian matrices are all 

normal  matrices.  

So, just to illustrate that it if A, if u is unitary then u u Hermitian equals u Hermitian u, which is 

equal to the identity matrix, implies unitary matrices are normal  matrices.. Similarly, A A 

Hermitian equals A Hermitian A if A equals A Hermitian. So, all Hermitian matrices are normal. 



Also if A Hermitian equals minus A, such matrices are called skew-symmetric or skew-

Hermitian then A A Hermitian equals A Hermitian A which is equal to minus A square. So, 

skew-symmetric matrices are normal.  

And finally just one more example. If I consider the matrix A equal to 1, minus 1, 1, 1. This 

matrix is normal. But it is not unitary or Hermitian or skew Hermitian or skew symmetric. So, 

basically the definition of normal matrices is strict generalization of these other  matrices like 

unitary matrix, matrices earlier symmetric matrices or Hermitian matrices or skew Hermitian 

matrices. So, here is a very, very interesting result which outlines some properties of normal  

matrices. 
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Student: Sir, It holds for orthonormal also? This A matrix is orthogonal but for orthonormal it 

should hold. 

Professor: Yes 

Student: Not generally for orthogonal 

Professor: If I had taken an extra 1 over square root of 2 factor here then this would have become 

an unitary matrix. And then of course since it is unitary it is also normal. But without that also it 

satisfies the requirement of being normal. 



Student: But generally orthogonal are not, right? 

Professor: So, again I think you ask this question the last time.  

Student: No sir I am asking 

Professor: No, I am just… In terms of notation I used two notations. One is a unitary matrix 

which is potentially complex valued but for which u u Hermitian equals the identity matrix. I 

also use the notation real orthogonal matrix. To me a real valued matrix satisfying u u transpose 

equals the identity matrix.  

So, I do not have a specific notation for  matrices like this A that I have drawn, I have written 

here where the columns are orthogonal to each other but they are not unit norm. I do not have a 

specific word for that. But basically a matrix like this whose columns are orthogonal and they 

have the same norm but not equal to 1 is also a normal matrix.  

Because if I take A Hermitian A I will get a diagonal matrix and the values along the diagonal 

will be equal to a scale, a scaled version of, A Hermitian A will be the scaled version of the 

identity matrix. And so from that you can see that if I take one over square root of that scaling 

then that matrix, and apply that to A and A Hermitian, that resulting matrix will become a 

orthonormal matrix. And so as a consequence multiplying it in the other order will also give 

identity matrix. So, A A Hermitian will be equal to A Hermitian A.  
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So, here is the theorem. So, if matrix A in C to the n cross n has eigenvalues lambda 1 through 

lambda n, the following are equivalent; a, A  is  normal; b, A is unitarily diagonalizable; c, sigma 

i j equal to 1 to n mod a ij square is equal to sigma i equal to 1 to n mod lambda i square. So, this 

shows that any normal matrix is unitarily diagonalizable, which is a different requirement or a 

different condition under which you can be assured that matrix is unitary diagonalizable 

compared to the result we saw earlier where we wanted the matrix to have distinct diagonal 

values. The eigenvalues lambda 1 to lambda n need not be distinct. If it is normal that is also 

sufficient. A is going to be unitarily diagonalizable. 


