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The last time we looked at spectral norm, and some of its, and spectral radius and some, r a d i u 

s, and some of their properties. And we started discussing about the error in inverses. So, today 

we will continue the discussion about the error in computing matrix inverses, inversions. And we 

will also talk about the errors in solving systems of linear equations.  
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So, just to recap, so we were looking at, in a matrix A and C to be n cross n, which is non 

singular. And we want to compute A inverse. So, A inverse exists. But because of various 

reasons, we do not end up computing A inverse. Instead we compute, instead of A inverse, we 

compute.  

Student: Sir your voice is breaking. 

Professor: A plus E inverse. So, I understand if my voice is breaking, but I think I am connected 

to the ISCW WLAN. So, this is the best connection I can get.  

Student: No sir your voice is okay actually, maybe you might be. 

Student: Sir your voice is okay. 

Professor: Okay thanks, yeah this is the best network I can get. So, I cannot really do much more 

than this. So, so the last so, we were looking at the error, which is equal to A inverse minus A 

plus E inverse. And we wanted to sort of get a feel for how this error, how big this error can be. 

And we did some algebraic manipulations, which I will not repeat again today, you can go back 

and look at the notes from the previous class.  

But what we showed is that if the norm of. So, let me put it this way, if I look at the spectral 

radius row of A inverse E, this is going to be less than or equal to the norm of, some norm, it 

does not matter which one. So, some matrix norm, A inverse E is less than 1, then these infinite 

summations can be evaluated in closed form. And so, we showed that the norm of A inverse 

minus A plus E inverse can be written as the norm of the summation k equal to 1 to infinity.  

Because the first term drops off, because it cancels with this A inverse term, minus 1 power k 

plus 1 times A inverse E power k times A inverse. And this by using the sub multiplicative 

property, we split that as the norm of this thing power k times the norm of A inverse. And so, we 

can show that this is equal to, actually less than or equal to norm of A inverse E divided by 1 

minus norm of A inverse E times the norm of A inverse.  
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So, we said that the relative error, which we defined to be norm of A inverse minus A plus E 

inverse divided by norm of A inverse is less than or equal to the norm of A inverse E divided by 

1 minus norm of A inverse E, if norm of A inverse E is less than 1. So, this gives us a way to 

bound the relative error in computing the inverse of a matrix, in terms of the norm of matrix A 

inverse times E.  

Student: Sir? 

Professor: Yes?  

Student: Sir, in order to calculate the norm of A inverse E, would not we need to know A 

inverse? 

Professor: You would need to know A inverse and E. So, as written, it is not very useful. So, but, 

so it will be useful if there is some way you can, in some independent manner, obtain a bound on 

the norm of A inverse E. So, for example, we have a row of A inverse E is less than or equal to 

the norm of A inverse E which can be further bounded as the norm of A inverse times the norm 

of E. And suppose this was also, norm of A inverse times norm of E was also less than 1.  

Now, in general, you actually do not know A inverse, and you do not know the, you do not know 

E. And so, you would not, so but then if you have some other way of obtaining a bound on the 

norm of A inverse and the norm of E, then you can find their product and utilize something like 

this. Yeah, but this is the nature of the results in a lot of the error analysis, where it gives you a 



way to bound the error at least when you know what is the error matrix. So, for example, if you 

are doing quantization of the entries of A, then you do know what the quantization error matrix 

is. 

 And so, if you knew the correct A matrix and then you know the quantized A matrix, you know 

the quantized error matrix. The other way these things can be useful is if you know that the error 

matrix comes from a certain distribution, then you can look at what values this right hand side 

can take as you take different values, different E matrices from that distribution. And use that to 

obtain some kind of bounds on this.  

So, you will have to bring in probability on top of this and say what is this, what is this bound, 

can this bound be shown to be less than something with high probability over all possible E 

matrices. So, you will have to use those kinds of techniques to further make these useful. But, if 

this is also less than 1, then we can simplify this further. See, this is the, this A, norm of A 

inverse times norm E is something that is bigger than this.  

So, if I substitute norm of A inverse times norm E over here. It only makes the numerator 

(())(08:42) it only makes the denominator smaller. So, it makes this overall ratio actually bigger. 

And so, we have that norm of A inverse minus A plus E inverse divided by norm of A inverse is 

less than or equal to norm of A inverse times norm of E divided by 1 minus norm of A inverse 

times norm of E.  

And I can multiply and divide by norm of A to write this as norm of A inverse times norm of A 

times norm of E divided by norm of A divided by 1 minus norm of A inverse norm of A times 

the same thing, norm of E divided by norm of A.  
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So, we will define this quantity here to be kappa of A norm of A inverse times norm of A if A is 

nonsingular, and infinity if A is singular. So, this thing is called the condition number of A. So, if 

we define it like this. So, so how many of you have heard of this concept of conditional number? 

Have any of you heard of it before?  

Student: Sir, it was discussed in the last tutorial. 

Professor: Very good, okay. But other than that in your undergraduate program, has any of you 

heard of the condition number of a matrix? 

Student: Something like the ratio of maximum minimum Eigen values.  

Professor: Correct, correct. So, if you take the spectral norm of the matrix, it is the largest 

magnitude Eigen value of the matrix. And therefore, one other side result is that if you know the 

Eigen values of a matrix, the Eigen values of the inverse of the matrix are the inverses of the 

Eigen values of the original matrix. And so, this condition number reduces to the ratio of the 

maximum to the minimum magnitude Eigen values of that matrix.  

So, yes, so, yeah so this is called the condition number. And note that if we consider this 

condition number K of A, this is for an invertible matrix, it is the norm of A inverse. So, but the 

more general definition is valid for any norm, it is specific to the norm. So, depending on which 

norm you choose here, you will get different values for this condition number. And this norm 

that you are choosing here is the norm under which (())(12:51) relative error over here.  



So, this is norm of A times the norm of A inverse, which is greater than or equal to the norm of 

A inverse A, this is just sub multiplicativity, which is equal to the norm of the identity matrix. 

And we know that for any matrix norm this is greater than or equal to 1. So, the condition 

number of, for any matrix A is going to be a number which is greater than or equal to 1, for any 

matrix norm.  

And further because it is lower bounded by 1, K of A even though it is mapping a matrix to the 

real line, can never be a matrix norm. Because K of A equal to 0 will never happen. And so, it 

will never satisfy this positivity constraint. So, what is the, so for, in particular, if I take the all 0 

matrix, what is its condition number? 

Student: Infinite. 

Professor: Infinity, correct. So, so thus we have this norm of A inverse minus A plus e inverse 

over norm of A inverse is less than or equal to K of A times, I will write it like this, 1 minus K of 

A times norm E over norm A times norm E over norm A. So, from this we can see a lot of 

interesting properties. So, for example, if this number is small then we can neglect this term here, 

it need not be a lower bound anymore, because then you are making this thing smaller.  

But assuming that this is small enough that neglecting it does not break this upper bound, you 

have kappa of A times norm E over norm A, which means that this K of A or the condition 

number of A, it represents the, it allows you to bound the relative error in computing the inverse 

in terms of the relative error in the matrix itself. And if K of A is close to 1, that is it is small, 

then we say that the matrix A is a well conditioned matrix.  

Because it only amplifies the norm E over norm A by a small amount, when you compute the 

inverse. Whereas if K of A is a large number, the matrix A is ill conditioned and, or poorly 

conditioned, and it will lead, it can lead to potentially a large increase in the relative error or a 

large value of the relative error in computing the inverse even for small perturbation E.  
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So, I will just mention (())(16:39) words that I dropped, small k of A, it is called well 

conditioned matrix, large K of A say that it is an ill conditioned matrix. And for completeness, if 

k of A equals 1, we say that it is a perfectly conditioned matrix. So, what is an example of a 

perfectly conditioned matrix?  

Student: Identity.  

Professor: Yes. How about unitary matrices? Are they perfectly conditioned? 

Student: Yes, sir.  

Professor: It depends on.  

Student: Yes, sir they are perfectly.  

Professor: It depends on which norm you choose to use. For unitary matrices, U transpose or u 

hermitian is the same as U inverse. And so, it becomes K of A becomes norm of U, U hermitian 

times norm of U. And so, depending on which norm you are using, they could be perfectly 

conditioned. So, in particular, if you are using the spectral norm, then they will be perfectly 

conditioned.  

So, the punchline is that, for well conditioned matrices, the relative error in the inverse is the 

same as the relative error in the data. Now, one other property of the condition number is that, if 

you take the product of two matrices, this condition number is less than or equal to the product of 



the two condition numbers. That is simply because the left hand side is norm of AB times the 

norm of AB inverse, which is less than or equal to.  

Now, I just use sub multiplicativity, norm of A times norm of B times norm of A inverse times 

norm of B inverse. So, actually, there is a lot more one can say about this condition number. I 

will leave some of them as homework exercises. And I will come back to this later in the course, 

if there is enough time. But right now, I do not want to distract ourselves from discussing about 

computational errors.  

(Refer Slide Time: 21:03) 

 
And so let us now discuss about bounding the accuracy.  

Student: Sir? 

Professor: Yeah? 

Student: Sir in the condition number, when will the equality exist in the above inequality? 

Professor: In this one, you mean? 

Student: Sir in the K AB is less than KA into KB. 

Professor: Yeah that is hard to say, when it will hold with equality. So, obviously, if A or B is the 

identity matrix, it will hold with equality. But for, I mean, it is not easy to come up with very 



general conditions under which equality will hold. It depends on the norm also. So, not easy. I 

mean, there is no straightforward answer to that question. 

Student: Sir, even if A and B are I, the equality will hold only when the norm considered is the 

greater norm, right?  

Professor: Correct.  

Student: Okay, thanks. 


