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So, typically we use just discussing about, where we use different types of norms. The reason 

why the l2 norm is the most popular norm is because it is it can be written like this, the l2 

norm squared can be written as x transpose x. So, it has lots of good properties. So, it is 

typical to use the l2 norm and optimization problems. 

Even if you want to use other norms, it is not uncommon to try to reduce it to an l2 norm, and 

then solve a sequence of problems where you are working with the l2 norm, and then hope 

that you will be able to solve the problem involving other norms. l1 norm is typically used 

when you want to find what are called robust estimators. 

And it is also used very heavily in compressed sensing, which I teach them the next term and 

it is promotes past solutions. Sparse solutions as solutions for these vectors, where lots of 

entries of the vector are equal to 0, and the many applications where you want to solve for 

example, an equation like Ax equals b.  

But this suppose this has many solutions, you want to find a solution which has the maximum 

number of zeros in x, and for such things solving for minimizing l1 such that Ax equals b this 

optimization problem will lead to sparse solutions for x, l infinity norm is useful when you 

want to, you care about element by element convergence or properties. 

However, as I mentioned, l2 norm is by far the one that is most amenable to optimization. So, 

the norm in which the norm that is most natural to a given problem may not be the most 

mathematically convenient or tractable one and so, if you use a different norm to solve the 

problem, we want to, ideally we want to know how it is related to the original how to solve it.  



And so, for example, if you are considering a sequence of vectors, and you want to look at 

this is a sequence of vectors output by a particular algorithm, and if you monitor say the l2 

norm of these vectors and you find that the l2 norm is converging, or you take the difference 

between consecutive outcomes of this iterative algorithm, and you find that the l2 norm of 

that difference is converging, does it mean that the vector itself converges or not?  

So, to answer these kinds of questions, there is a very strong property that norms satisfying 

which is that essentially, if a sequence of vectors converges according to a given norms, it in 

fact, converges to the same point with respect to any other norm that you wish to use. And so, 

I will just discuss that aspect a little bit. 

Student: Sir, what is meant by robust estimation? Is it like, (())(04:25) perform well in the 

presence of noise or…  

Professor: Yes, certainly you want it to perform well in the presence of noise, but other norms 

also will give you good properties in recovery in the presence of noise. However, what 

happens is that, if you think about it, suppose, just go off to the side a bit here, this is a side 

note. So, suppose you have a certain point x naught and you have an algorithm, where you 

hope that the algorithm will return this optimal point x naught.  

But it returns a different point call it say x hash. And now there is a distance between these 

two and your algorithm is returning x hash, because you have sort of said I want to minimize, 

say something like x, some function of x, subject to some constraints and effectively, if you 

are looking at say the l2 norm, what this is doing is it actually taking the difference between 

all entries have x hash and the corresponding entries of x naught, it is squaring them and 

adding them up and then finally taking a square root.  

So, if I consider the square of this Euclidean norm, you can see that if there are one particular 

pair of entries in x hash and x naught, where this difference is very large, because you are 

squaring it, the distance or the Euclidean norm will end up becoming a very big number. And 

so this really penalizes the most mismatched entry the most.  

And the penalizes the least mismatched entries less, but if you take x hash minus x naught 

and one norm, then what this is doing is just looking at the magnitude of the error between x 

hash and x naught and so, this essentially penalizes all the errors more or less equally. So, 

that is what is called robust estimation.  



So, you are not giving undue importance to incurring a large error in some components and 

incurring a small error in other components, all errors are equivalent to you. And that is what 

is referred to as robust estimation.  

Student: (())(07:15)  

Professor: So, there are many parameters. 

Student: But how does it translate in l infinity norm, there we are only optimizing with 

respect to only one this maximum element or…   

Professor: You are looking in l infinity norm, you are looking at the largest entry of x hash 

minus x naught. So, this is typically used in what are called min max type of problems, where 

what you want to minimize is the maximum deviation across all entries between x hash and x 

naught. And when that is important to you, then you would use the l infinity norm, so yeah. 

Student: Thank you sir. 

Professor: So, let me define what I mean by convergence of a sequence, a sequence of 

vectors. So, the main point, I will first write down the punch line here, and then I will discuss 

further. So, the punch line is that vector norms can be used to measure convergence of a 

sequence of vectors.  
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So, let me define convergence first. So, let V be a vector space over R or C, and let be a 

vector on V. So, we say the sequence xk. So, this is a common notation for denoting a 

sequence you write curly braces xk. And sometimes you write k greater than or equal to 1. If 

you want to say k goes from 1, 2, 3 up to infinity, this of vectors nV converges to x this is 

also in V with respect to this norm defined like this, if and only if xk minus x goes to 0 as k 

goes to infinity. 

And we will write this as, limit k tends to infinity, xk is equal to x. Now, again I have to write 

with respect to this norm, like this. So, this is the definition and two aspects sort of 

immediately come out. One is that, it seems that in order to define convergence of a sequence 

of vectors, I need to tell you with respect to which norm I am asking for this convergence. 

The second is that, if I change the norm, it is possible that this xk will converge to a different 

point x dash, because it is dependent on which norm I am specifying here.  

So, the two related questions are one is, is it possible that this given sequence xk converges 

with respect to one notion of norm, but not in another? And the second question is that, can a 

sequence converge to two different points with respect to a given norm? So, it turns out that 

the answer to the first question to both questions is no in finite dimensional space, but it is 

possible that a sequence converges with respect to one norm, but not in another infinite 

dimensional vector space.  

There is an example in Holland Johnson, which shows that shows that sequence can converge 

to two different points with respect to two different norms. But we would not discuss that 

here because the focus of this course is on finite dimensional vector spaces.  
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So, the first question is, can a sequence converge in one norm but not in another? And the 

answer is no finite dimensional vector space, and we will see why this is true in a minute, but 

before that, let me write the other question which is actually easier to show. So, can a 

sequence converts to two different points with respect to a given norm? 

So, the answer is no. So, that is this limit k tends to infinity xk equal to x and limit k tends to 

infinity xk equal to y with respect to the same norm possible, and the answer is no. And that 

is, that is very easy to see. And I guess some of you may have already been able to figure out 

why, and the reason follows from triangle inequality.  



So, if so, what we are told is that xk minus x, this goes to 0 as k goes to infinity. And 

similarly, xk minus y also goes to 0 as k goes to infinity. So, what that means is that if I take 

the norm of x minus y, so that is equal to the norm of x minus xk plus xk minus y, which is 

less than or equal to the norm of this is triangle inequality, xk plus xk minus y, which both of 

these terms are going to 0 as k goes to infinity, so, this itself goes to 0 as k goes to infinity.  

So, but the left-hand side is greater than or equal to 0. And which implies that the norm of x 

minus y and so this is non negative and but this is a norm. So, if this becomes equal to 0, it 

implies that x equals 1. So, it has to converge to the same point.  

Student: Sir.  

Professor: Yeah?  

Student: Is there a particular sequence can converge to different points, if we did… the 

different norms? 
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Professor: So, that is what I want to show now. To, show that a sequence cannot converge to 

different limits for different norms, is one other theorem that we will need. And so, this 

theorem is actually a theorem from real analysis will outline the proof, but there is one step 

that we will need from real analysis, which I would not go into here.  

So, f1 and f2 be real valued functions on R to the n, for n finite. When suppose, three 

properties hold, first is that fi so, fi of x is greater than or equal to 0. So, these will be 



replacing f1 and f2 with norms later on. So, this is true for every x in R to the n and fi of x 

equals 0 if and only if x equals 0. And property b, is that fi of alpha x is equal to mod alpha 

times fi of x for every alpha belonging to R and x belonging to R to the n.  

And property c is, fi of x is continuous on R to the n. So, notice that I am not using I do not 

require the triangle inequality, which is part of the definition of a norm, I just need these three 

properties. But instead of or not instead of, but I do not need the triangle inequality. But I do 

need this continuity property, on R to the n, I will just leave it like this, I think all of you have 

some idea of what it means for a function to be continuous.  

I would not go into the definition of continuity and so on here. In fact, this continuity is really 

used only in when we use another famous theorem from real analysis called Weierstrass 

theorem, which is used in the proof but other than that, you know, let us not get into the 

notion of contiguity in this right now.  

So, will take this on faith that we know what is continuous and what it means for a function 

to be continuous. So, when this is true, then for there exists positive constants which will call 

C small m and C capital M, such that C small m times f1 of x is less than or equal to f 2 of x 

is less than or equal to C capital M times f1 of x for every x in R to the n.  

That means, now translating this into norms, what this is saying is that, if you take a different 

norm, the norm of x with respect to this, the second norm of x is sandwiched between some 

constant times the first norm and some other constant times that same first norm. So, that is 

this result.  
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So, the proof goes like this. So, let h of x be defined as f2 of x over f1 of x, for x in some set 

S, where I will define this set as S is the set of x in R to the n, such that x2 so I am using the 

Euclidean norm here, but you can actually use any other norm here, it does not matter. So, the 

reason I mean the only thing you need is that the set S must be a compact set and it does not 

include the 0 vector.  

So, that is again this is another notion from real analysis that is beyond the scope of this 

course, but, for your reference, you can note that the compact set. Then what we have is that 

h of x is certainly not 0 for any x belonging to S, because there is the 0 vector is not here and 

a fi of x is positive strictly positive for any x naught equal to 0.  



And so, both these numbers as f1 f2 of x and f1 of x are both strictly positive numbers and so, 

their ratio is also some strictly positive number and so, h of x is not 0 for any x in S, and also 

h of x is continuous on x belonging to S because of this property is c, the ratio of two 

continuous functions is also continuous. 

So, now what Weierstrass theorem says, it says that h a function h, which has these two 

properties it attains finite positive max, maximum C capital M and minimum C small m on 

the set S. So, that implies that we have C small m times f1 of x is less than or equal to f2 of x. 

So, h of x is between is bounded between C small m and C capital M and h of x is just f2 over 

f1. I am taking f1 to the other side. 

And then I have C capital M times f1 of x for every x in S. But we have that if I take z over 

norm z. This it always belongs to S for every nonzero z in R to the n. So, then what I can do 

is, if I want to show that this holds for every x, I just replace x with x and R to the R, if I want 

to show that this holds for every z in R to the n, I just replace x with z over norm of z for any 

nonzero z then by property B, which is homogeneity property.  

This non z can come out of this and then it will cancel throughout because there will be a 1 

over norm z, here 1 over norm z, here 1 over norm z, here it comes out throughout. So, from 

being the above inequality holds for every nonzero z belonging to R to the n, but then if z 

equal to 0 the case is trivial because this is 0 and this is 0 this is also 0.  

So, it is already true. So, that concludes this proof. So, now the consequence of this is that, if 

you have two different norms are vector norms on Rn and if xk is given sequence of vectors, 

then limit k tends to infinity xk is equal to x with respect to alpha if and only if limit k tends 

to infinity xk is equal to x with respect to beta. 

So, it does not matter which norm you consider if it can be converges with respect to a given 

norm then it converges to with respect to any other norm and in fact, it converges to the same 

point. So, the proof is one line. So, we have by the previous theorem that Cm times xk minus 

x alpha is less than or equal to xk minus x beta.  

So, there exists exist constant Cm and C capital M such that this holds xk minus x alpha and 

this is true for every k that implies that the xk minus x alpha can only go to 0 if and only if 

see this quantity is sandwiched. This quantity is sandwiched between these two quantities. 

So, if you want this to go to 0, then this side will also go to 0.  And that is only possible if this 



guy is also going to 0, if this is going to some nonzero quantity, then you cannot have it being 

sandwiched between these two if this is going to 0.  

So, this is true if and only if xk minus x beta goes to 0 as k goes to infinity. So, basically this 

implies that in the finite dimensional vector space, all norms are equivalent in the sense that 

whenever xk converges to x with respect to 1 norm, then it converges to the same x with 

respect to any other norm. So, I think we are out of time for this class. So, we will stop here 

and continue the next time. 


