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Hello, everyone, welcome back so we will continue the discussion on the conservation law. 

So before we go further, so we will discuss some examples and let us start with what is meant 

by conservation law. So, again this is motivated by fluid flow problem. So, imagine a fluid 

flow and so, there is some imaginary domain within the fluid omega. So, at any time the mass 

of the fluid within omega is a constant and that is termed as conservation of mass and 

motivated by that.  

 

So, the mass comes from the density so, we have some general definition of conservation 

law. So u is density of that substance and f is its flux. So here that fluid, so suppose the fluid 

is in this direction, the arrow of direction, then fluid enters this domain and some fluid leaves 

this domain and at any time interval, so, we expect this conservation law to hold. So, this is 

density so, this gives you, if its density of the fluid, it gives you the mass of the fluid in 

omega that is present between 2 times t 1 and t 2.  

 

And that must be equal to the whatever the amount of fluid that has entered the region and 

left at t 1 it has entered t 2 it had left and so, there is actually this should be equal to minus so 



I am taking that so, f is the flux and nu is the outward unique knock as usual. So, this is a 

generalised statement of a conservation law. And when most of the time we are dealing with 

1 dimensional thing, so, this omega is replaced by an interval.  

 

So, we will see an example of traffic flow that is 1 dimensional. So, this is the conservation 

law in integrated form so, this for example, from fluid dynamics gas dynamics. So, this 

conservation of mass, momentum and energy they all appear in the integrated form, under 

appropriate assumptions on the continuity of the functions involved. So, we get the 

conservation law in the differentiated form, so, that is a differential equation.  

 

So, first you divide by t 2 - t 1 and let t 2 = 0 and that gives you this u t here, so, omega 

integral omega u t and this side you have only this surface integral this when divide by t 2 - t 

1 and let t 1 to t 2. So, that will give you a surface integral and then you apply the divergence 

theorem. So, that becomes divergence of f. And then if you combine these 2 you get integral 

omega of this quantity u t + divergence of f = 0.  

 

So, for that is true for all omega so, once you shrink omega so assuming that this quantity is 

continuous. So, we derive the conservation law in the differentiated form. So, in deriving this 

mass, momentum and energy conservation equations, so, we need to take different u’s and 

different f’s.  
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So, here I just written some terminology, but for more details you should consult a good book 

on fluid dynamics. So, now coming back to a fluid flow problem, so, these are the usual 



notations, so, this is rho is mass density and capital M is rho times V, V be the velocity, so, 

that is a vector again. So, there are 3 components in Cartesian coordinates, so, that is called 

momentum density and then the energy density and internal energy.  

 

So, all these quantities, so, if you want to know more about the physical significance, you 

should read some good books fluid dynamics. And then using this conservation principle we 

derive these system of equations and then of course, there are 1, 2, 3, 4, 5, 6 unknowns but 

there are only 1, 3, 4 only 5 equations.  
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And to make it a self contained systems. So, many assumptions are made in the context of 

fluid dynamics, so, one usually gets this system of Euler equations so, you just go through 

some good book on fluid dynamics and in fact fluid dynamics gives you lots of models for 

this conservation loss that is main source in fact, that is the main source.  
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And the second example is traffic flow problem. So, this is again when we make that so, here 

so, this is long highway. So, that is along the x axis so, this is what we are proposing here this 

model is a single lane problem. So, one can also incorporate multi lane so, big highways are 

now that are multi lane highways, so, that is more complicated. So, here this is just a single 

lane and that too in a unique direction, so, if you include again both way traffic, this will be 

more complicated.  

 

So, here is the simple model so, let u x, t denote the number of vehicles passing through the 

position at x at time t. So, this is a whole number, we treat this as a continuous variable. That 

is usually what is done in most of the modelling problems, you want fluid flow problems. So 

they are actually finitely many particles, but then there is continuum hypotheses etcetera 

which makes it possible to consider has a continuum.  

 

So those are some of the philosophical questions. So similarly, here, we are doing that. And 

let v x, t denote the average local velocity of the vehicles that is when local speed. And let us 

assume that at any into x 1, x 2 and this highway. So at any time, t, the number of vehicles 

within this interval, x 1 into 2 is a constant. So there is  the assumptions of conservation and 

that leads to just take a look at this so that u number of vehicles is our density now and the 

flux will be u times so u is the average velocity.  
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And so, that relation is in the present context. So, this at any 2 times t 1 and t 2 assuming that 

this number of vehicles in any interval is preserved, we get this conservation relation.  
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And again you divide by t 2 - t 1 and let that go to 0 that difference so, we get left hand side 

we get integral of u sub t. So, that is the derivative and right hand side to get vu x 1 t, vu x 2 t. 

So, in this relation we easily see that vu denotes the flux. And again you will divide by x 1 - x 

2 and let that go to 0. So, then we get so, this is the actually this one is the conservation law 

in integrated form and provided the quantities in question are continuous.  

 

So, u t should be continuous and this vu should be continuous and this is the conservation law 

in differentiated so, that is a different thing. So, again first start with order we get first order 

partial differential equation.  
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And now make some reasonable assumptions on the local velocity. So, obviously, we can 

assume that this local velocity is a function of u. So, as the experience shows the drivers of 

the vehicles increase or decrease their speeds, then that is v according as the number of 

vehicles and that density u decrease or increase. If there are less number of vehicles on the 

road the speed will be increased and if there are more number of vehicles obviously, the 

speed will be reduced and when the density is maximum.  

 

So, almost all vehicles will come to a standstill and that represents almost 0 velocity and in 

any even if the density is very low, usually there are speed limits. So this velocity cannot 

peak cannot exceed certain limits. So, when density is very, very low, so, v is almost that a 

load limit that will be x. And so that represents the speed max there. So, when u is so the 

density is 0 obviously the no vehicle so speed is obviously 0 and again when u with that 

maximum possible density.  

 

And then again v 0 and so there is a maximum speed. And in this case, looking at the graph 

of this a few we see that f is a concave function. And so this conservation law is a concave 

conservation law. But most of the theory that we are going to study applies only to convex. 

That is the main adjunction convex conservation law that is f the flux convex but that is 

easily turned into a convex law by changing the sign. So, if f is concave minus f is convex so, 

that is not a problem at all. So, this traffic flow problem also very well fitted to the general 

theory of convex conservation law.  
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And I just mentioned here some other examples the model equations from many fields come 

into this form of conservation laws and these fields include electromagnetism, magneto 

hydrodynamics, hyperelastic materials, chemical physics and engineering, there are processes 

called electrophoresis and chromatography. So, these are again very good models and these 

how benefitted lots of industries and there is also combustion theory. 

 

So, these all fall into this subject of conservation laws. So, these are some important class of 

examples of course, major part of the problems they come from fluid flow problems. So, with 

those examples now, we proceed to discuss the solutions of the conservation laws.  
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So, let me again start with this so, usually we assume this f is at least c 2 more assumptions as 

follows and this is an example of quasi linear first order equation. So, this can be solved by 

method of characteristics as long as the characteristics do not meet each other. So, that we 



have already seen in first part. So, let us now see if the how they discontinue develop how 

should this solution behave across a discontinuity.  

 

So, let u be a weak solution of this conservation law and you take any open set in R cross R 

plus, R plus here is the positive real axis and let this gamma be a curve sitting in v. So, we 

assumed that this weak solution as we discussed in the previous class, so, the definition of 

weak solution gives us an integral relation in terms of the test functions.  
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So, suppose we assume that so, this is our  V and this curve divides this domain into 2 parts V 

l and V r, V l for left hand, V r right and assume that this weak solution is C 1 in both the 

these parts, so, left and right and gamma is the curve of discontinuity for the solution. So, we 

also assume that this limit of u when it approaches from the region l approach is curve 

gamma has a finite limit.  

 

And similarly when it approaches from the region V r that is also finite and call them those 

limits, u l and u r, of course, depend on this weak point V r on this curve. So, u l, r functions 

of t across this gamma and u l is not equal to 1. So that is discontinued and since we are 

assuming u is C 1, in both V l and V r, as we saw in the previous class, this, u satisfy this 

question both V l and V r though it is a weak solution, but since it is C 1 here, so at those 

points, it satisfies the differential equation point wise, both in V l and V r.  
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And now you start with the definition of the weak solution. So the origin is the weak solution. 

So this holds true for all test functions phi. So there is another term coming from the initial 

data, but if we do that suppose phi is in V, and 0 is not included there. So that phi 0 is 0, so 

other V is not there and since this V the union of V l and V r. So, that is the advantage of the 

integration.  

 

So, we can take that as sum of 2 integrals one over V sub l and another one from V sub r. So, 

consider for example, this V sub l integral, integral over V sub l and here so, since we are 

assuming u is C 1 in V sub l, so, we can integrate by parts. So, when you integrate by parts, 

we get that first term and then there is a boundary term so, just remember the boundary here. 

And what matters is this values on this gamma and values on the other part of the gamma are 

V l are taken care by the support of phi so, they will not be there.  

 

So, only that integral over gamma appears. So, you apply Greens formula you get that and 

then V l we already seen that this for that vanishes. So, this integral over to V reduces to this 

line integral.  
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Where this nu t and nu x this components of the outward unit normal to gamma chain that 

this is gamma, so, since it is outward unit normal, so for the part V sub l this normal point 

towards V r, and for V r it points towards V l, so there is a sign change so that should keep in 

mind and this is the line measure you want to call that, it is just this is a curve. So this is line 

integral deca just that is notation. So, this is the line integral just remember this is from the 

Green’s formula or divergent theorem and that gives us so, this term vanishes so this integral 

over the region l just given by this line integral.  
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And similarly for the region V sub r is again line integral and as I said this sign changes so 

we have minus here because that direction of the unique normal changes, so get this minus 

and now we add these 2 relations. So, this integral over V l + integral over V r is equal to 

integral over this line integral over gamma and line integral over gamma. But the left hand 



side if we had integral over V l and V r and that is 0 that is how we started with this sum of 

these 2 integrals if 0.  

 

So and that we get so, this u l - u r nu t f of u l - f of u r nu x whole multiplied by that test 

function phi is 0. So, here are denoted by the square bracket. So, these are jump across and 

that jump induces a jump in the flux here. So, this is jump of u and jump of f of x just by 

adding these 2 relations we get there and again since phi is arbitrary test function we should 

have this relation so, this integrant vanishes.  
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So, this of course along the gamma this is referred to as Rankine Hugoniot condition or 

simply jump condition. So, any weak solution of the given conservation law that is first order 

ODE. So, any weak solution of this conservation law having a discontinuity along the curve 

and smooth on either side of the discontinuity curve must satisfied. So, this is a necessary 

condition must satisfy this Rankine Hugoniot condition.  

 

So, now, we can rewrite this in more neater form if you assume that this smooth curve is 

given in terms of a function namely x = t. So, we can express the components of the unit 

normal in terms of that s. So, this so, gamma is described by this curve called x = st and s dot 

denotes derivative with respect to and so, that denotes the speed of the this discontinuity 

curve in terms of s we have new sub x the component of the unit normal unit is one plus your 

s dot square to the minus half and the t component is minus one plus s dot square minus half.  
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So, if you plug in that in this so, there is a new t and x and do some simplification what you 

get is f of u the jump across gamma is given in terms of jump of u multiplied by that sigma. 

So sigma so, this is minus they are functions of t just remember that. So, this speed of the 

discontinuity curve is expressed in terms of the jumps of the solution across that 

discontinuities.  

 

So, this is an important relation that every weak solution must satisfy, our next discussion is 

regarding the uniqueness question. So, this example is with regard to uniqueness of the peaks 

of solution whether one can have more than one weak source and this example is towards 

that. So, consider this Burgers equation u t + uu x = 0. So, in terms of the f so, here in this 

case here f of u is half u square and let the initial data be given by this u 0.  
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So, u 0 has discontinuity at x = 0, so, it is 0 for x less than 0 and 1 for x be 0. So, the 

characteristics in this case are very, very simple. You can recall from what we have done in 

the first part,. So, for x so these are in the plane so, for x less than 0 the characteristics have 0 

speed here that comes from this 0 initial data there. So, they are all just straight lines so, x 

equal to constant.  

 

So, I have put some arrows here, that is just to show that so, in this case, of course, they are 

constants so, there is increasing time. And for x bigger than 0, they all have the characters 

have all speed one, so, they are just given by so, these are the curves. So, any general curve 

here is x plus some x 0. So, this is x 0 they are all have slope 1 these are the characters and 

that leaves this portion this portion what is that portion? These portion no characteristics. 

 

So, the method of characteristics does not give any value of the solution in this region and 

what is that region so this is just 0 x / t that is the region. So, the method of characteristic just 

gives you this u of x t = 0 if x is less than 0. So, we are interested only t positive testing that 

and one again if x is bigger than t greater than  0, so, this leaves that region 0 less than x less 

than t. So, the method of characteristics would not give you any solution. Now, we try to 

construct solution weak solution for all x and t.  
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Now consider these 3 functions so I am defining 3 functions here. So, u 1of x t I am defining 

for all t is positive so that is I want to define x t positive t = 0 we have given that. So u 1 of x 

t is 0 if x is less than t / 2 and 1 if x is bigger than t / 2. Of course, any constant is a solution 



of the given equation, so, only it needs to satisfy the initial condition. So, in all these cases, 

we are just gluing appropriate constants to the left of the line and to the right of the line.  

 

So, here you can see so, even t 0 can take the limit. So, x less than 0 we get 0 and x bigger 

than 0 we get 1 so, that initial condition is certainly satisfied and since they are just constants, 

so they also satisfy the equation. And so, here the discontinuity is given by x = t / 2 so we 

will see that.  
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And again here so, u 2 also consists of 3 constants states, so 0, half and 1 in different regions. 

And now, this is if x / t is 1 by less than 1 / 4, and half, 1 / 4 and 3 / 4, and one gives x / t 

together 3, 4, and one more function. Let me define that and then we will analyse all the 

resources. So, u 3 0 if x / t less than 0 and the x / t if 0 is less than x / t less than 1and 1 x / t is 

bigger than. So, let us consider this first function u 1 of t, so x = t / 2 that is the line of 

discontinuities.  

 

So, in this case, the curve is a straight line x =  t / 2 and so, we have on the left we have the 

value 0 and on the right we have the value 1. So, if you plug in this into this jump condition, 

you easily see that the jump condition is satisfied. So, in this case we have constant speed so 

sigma is just half x is t / 2. So x is t, x is t / 2 so if derivative is just half and as I said this u l is 

0 and u r is 1 and our f of u is half u square. 

 

So you get the f of the u l is 0 f of u r is half. So if you plug in now this value, so you get half 

equal to half, so jump condition is easily seem to be satisfied here. And you can even put in 



these values so these are just constant state, so it is easy to verify that is in fact that is not 

difficult at all this presenter consisting objects. And what about u 2, so u 2 we see there are 2 

lines of discontinuity, namely, we x = t / 4, and x = t / 3 and again, which 0 here, half there.  

 

So you are just joining this constant functions by these lines of this discontinuity and the as 

we did here, so you can easily check that the jump conditions across both the discontinuities. 

So here, we have 1x = t / 4 and here it is equal to 3 / 4t. So again, jump conditions are 

satisfied. Now there are 2 so, you can see what about u 3? u 3 there is no need to verify the 

jump condition though accurately you see that the x = 0 and x = t but across those 2 this u 3 is 

continuous.  
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So, all 3 so namely u 1, u 2, u 3 in fact you can produce many more are weak solutions this 

will be x 0. So, certainly the uniqueness is lost but uniqueness is an important requirement in 

the study of any physical situation which will not like to have multiple solutions. So, which 

one to choose and which one to reject?  

(Refer Slide Time: 42:28) 



 
And that is where the physics has to enter into picture the physical situation and it was Lax 

who first proposed this particle Lax’s entropy condition simply about the condition. So, let 

me write the condition and then we will see which one we should keep as a solution and 

which we should reject. So, here so, the characteristics so, this is in here looks a little 

complicated the characteristics from both the sides of a discontinuous and this is also called.  

 

So, this also we said already also shock should impinge upon comment something like that. 

So here is x this is t so, this is say shock. So this entropy condition will suppose these are the 

characteristics from this side. So this is the top so if you look back again these examples. So 

you see, that is why I have drawn that yellow so, the entropic condition. So, in this case 

handouts will discuss.  

 

So, for this reason this because of the central failure of the entropy condition, these 2 

solutions are rejected, so, here the question of verifying the entropy condition does not arise 

because u 3 is continuous. And this has a name, so, this is called rarefaction, so it is a 

constant state and the left of this so, this is like a fan in fact, it is called fan wave. So, in this 

fan wave joins these 2 states 0 and 1 continuously. So at the left, it joins 0 and at the right, it 

joins 1. And over the years, this central precondition has gone into many different forms. So, 

obviously, this is somewhat tedious to verify in a given situation.  
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But for so that is what Lax observed so for the strictly convex so in that case, we call the 

conservation bias strictly convex conservation law. This entropy condition is equivalent to 

saying u l is bigger than u r. So remember u l in the limit of the solution as it approaches the 

discontinuity from the left and use a bar the value of the solution as opposed from the right 

and even in that, so, in this case this half u square is strictly convex, there is no problem with 

that.  

 

So, here we have on the left it in 0 and on the right 1. So, that it is violated and again here on 

the left it is 0 and here it is half again that is violated and here on the left it is half and on the 

right it is 1 again that is violated. So, u 1 for the other region so this so this is somewhat 

simpler. But this applies only to this strictly convex of course, we are dealing with that and 

now it is this entropic condition.  

 

So, this is the result of many years of research. So, this now stated in the form of an image 

one, one sided very elegant form. So we will discuss this after we obtain Lax-Oleinik 

formula. So, it combines the earlier versions into so, this is just elegant form and it directly 

involves the solution. So, it is in terms of the solution and as you see, it also gives rise to so 

also gives some regularity we see all these things.  

 

So, in order to avoid this non uniqueness, we have to impose an additional condition now that 

is known as in entropy condition so, this is an easier version of saying that, so, but will soon 

see this can be stated as a one sided unique quanity, so we from here, we proceed next time. 

Thank you. 


