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Welcome back in the previous class we had discussed in detail the wave equation in 3 

dimensions by the method of spherical means and then we derived the formula for the 2 

dimensional wave equations using the method of descent. And to continue again the method 

of descent we also derive the formula for the solution of the telegraph equation in terms of 

Bessel function and we started the discussion on what about the case of n bigger than 3. So 

now continue the discussion on that. 

(Refer Slide Time: 01:55) 



 
So more or less the ideas are already there even in the case of n = 3 so we continue the same 

discussion. So now consider again the initial value problem for the wave equation now when 

R n. So equation for x belongs to R n and t positive and prescribed initial conditions. So what 

we did for n = 3 So we consider this spherical mean function of u and then we observed that 

if u satisfy the wave equation this M u satisfies the second order equation but important 

reduction here is this only 2 variables.  

 

So the t and r is the real variable that is introduced through the spherical mean function. So 

again I stress that this as far as the M u is concerned this x variable plays only the role of a 

parameter so it will not come in the analysis of this M u. So, M u the main thing is so satisfies 

a second order equation only in 2 variables. And what do in case of n = 3, so by a simple 

transformation we could remove this first order derivative with respect to r. 

 

So that reduce this equation to 1 dimensional wave equation and then we can use the 

D’Alembert’s formula etcetera. So we try to do the same thing again not try to remove 

somehow this first order part so namely n - 1 / r d / dr. And for that now we use as earlier it 

was only just a multiplication of M u / r. So, r M u that did the job of removing this first order 

thing and obviously know that not sufficient. So we look for a differential operator so this is r 

so used to variable coefficients. 

 

So the coefficients r powers of r source a variable coefficient operator. And now let us see 

what we want this L m to do. So we operate L m on both sides of this Euler Poisson dot 



equation satisfied by M u. And again this is a linear operator and the equation is linear so 

everything is fine here. 
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So since r and t are independent variables so this second derivative with respect to t I can just 

bring it out but this one so this is also a differential operator with respect to r. So in r variable 

and this is also a different second order differential operator with respect to r and since these 

are variable coefficients so generally they do not commute. So this I cannot push this L m 

that is just like we did here so this L m d square / t square they commute.  

 

So I can just push this L m inside but that is not possible here. But somehow we want this L 

m to do that job. So when I push this L m inside in the outside I just want to have a second 

derivative with respect to r only. And so what makes it that possible whether this is possible 

or not we have to see in detail so again I am writing that thing this is what we want so just 

look at here.  
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We want this so L m so this is a differential operator, this is a differential operator, we want 

this and you rewrite now so this how to see these things so you just operate on any smooth 

function so I want to the same quality as operators. And the rewrite this one so this L m d 

square / dr square you take the other side so d square / dr sqaure L m - L m d square / dr 

square and the n - 1 is a constant.  

 

So this is just again linear operators so n - 1 L m 1 / r d / dr. And this left hand side is denoted 

by the square bracket and it is called commutator of these 2 operators d square / dr square and 

similar to commutator of 2 matrices suppose that is possible. Somehow we have found this L 

m support that is possible then what happens? Then it becomes very easy. 
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So now you define again N x r t. N as a function of x r t that L m operating on this M u x r t. 

So in case of n = 3 so L m is just nothing but multiplication by r. So this means L m if I 



operate on function v it is just r. So in this case it is a differential operator. L m M u x r t so 

assuming this commutator relation between these 2 operators is satisfied then again go back 

to this computation.  

 

You see that this n satisfies the 1 dimensional wave equation and what about the initial 

conditions on M? They are just coming from this M u so N of x, r, 0 t = 0 you get L m, M psi 

x r and the first derivative with respect to t at t = 0 again in terms of M psi. The only 

difference is this you have to operate this L m whatever that L m. And then of course so since 

now this is just 1 dimensional wave equation so you just apply numbers we just apply 

D’Alembert’s formula to obtain N.  

 

But our main concern is one to obtain u and that is again easy. So you just see what N is so N 

is N of x r t that is our definition of N. So if that is L m M u acting on M u and we are taking 

L m and this differential operator. So you first write the order so there is no derivative here.  
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So you see these r j + 1 del r j so if I put j = 0 only r remains there. So a 0 r M u x r t plus 

terms containing r power j, j bigger than 1 j is bigger 1. So if I divide by a 0 r on both sides 

then I get this N x r t / a 0 r that is M u plus terms containing powers of r j, j bigger than equal 

to 1. Bigger than dividing by r so at least there will be r power 1 and higher powers. So this 

only M u remains when I take the limit r tends to 0 all these terms vanish and only this M u 

remains and you know that this limit is r tends to 0 of M u is u x t so this is very, very nice. 

 



So once you get hold of this L m so it is possible to obtain the solution of the wave equation 

in terms of this N by some easy process. And it turns out that this above procedure works for 

n bigger than equal to 3 but only when n is odd and in this case we also see that m = n - 3 by 

some. So I am avoiding lengthy and somewhat tedious calculations what one should do is 

look at this commutator relation so this is our requirement.  

 

So you just substitute this L m in this form and work out the details they are straightforward 

but very tedious calculation. So the first thing we notice that so these coefficients essentially 

we have to determine these coefficients. 
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So, we obtain using this commutative relation we obtain recursion relation satisfied by these 

coefficients. So, when you substitute this and then you equate the like powers of the operator 

this differential operator del r j both sides so we obtain recursion relations. So all will be 

multiples of so all A j are multiples of a m. So that means you can take a m = 1 as I said I am 

not doing the computations it is lengthy computations.  

 

So, it can just look into our book there are some exercises they are straightforward but lots of 

calculations so you have to use Leibniz rule for the differentiation etcetera. So from the 

beginning we take a m = 1 in this operator and then all a j they satisfy recursion relations so 

they can be obtained one by one in terms of a m. And it is not easy you cannot easily write 

down the formulas for a j you see lots of binomial coefficients with positive sign negative 

signs.  

 



So they are complicated expressions but what we require is again look at the end result we 

only need the coefficient a 0. We do not require the intermediate coefficients the exact values 

of the coefficient you do not need and the first relation we obtain is this. N must be r because 

we obtain this n - 1, n - 3 that means we obtain 2 m + 3 = n that forces n should be odd and 

easy. So, this works only for odd n which are together. So you see here again when n = 3 m is 

0 so it is just L m is just the multiplication operator and when n is bigger than 3 we get more 

and more terms that is fine. 
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So we have to just obtain in a 0 so one more computation we have to do that. So it is again 

most of these arguments follow from induction process. So we have to do by induction and 

that L m can be easily expressed not easily but you have to some work in a need for so L m 

turns out to be this operator 1 / r d / dr to the power m into this r 2 m + 1. So, since we are 

dividing by r is r is not equal to 0 you have to take but again we expand it is preside the up 

this form.  

 

So, whatever r factors come in the denominator they all get cancelled. So it is of that r so 

again this is proved using an index. So this means so when you operate on a smooth function 

v so L m of v is given by 1 / r d / dr of this function r to the power 2 m +1. So v is a smooth 

function of r and in this form we readily see that so this we want to see a 0 coefficient that a 0 

is given by 1 into 3 into 5.  

 

So all odd integers starting from 1 up to 2m + 1 and now we know that m is n - 3 / 2 so, you 

can express this in terms of n minus this 2m + 1 you can write as n - 2 and remember again 



your n is bigger equal to 3 and r. So once we obtain the solution of the wave equation for n 

bigger than equal to 3 and r and again we can use the method of the descent Hadamard 

method of descent and then obtain the solution for n even us. 
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So in this way we obtain a formula for the solution of the wave equation in all space 

dimensions. Of course when in case of n = 3 and n = 2 then the formulas are not simple 

compared to for example D’Alembert’s formula is very easy to handle but not in higher 

dimensions.  
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So now we summarise so that we write it in neat formula. So, we hide all the complications in 

a symbol and write the solution. So for a smooth function h from R n to R define these 

quantities so, again this is a function of x and t. So, when n is an even integer n = 2k showing 



defined Q h x t as 1 / 2 gamma k and this complicated operator so and this you remember it 

also comes here same thing now r is replaced by t so 1 / 2t d / dt to the power k - 1.  

 

 

So, even in division you also see that is more complicated case and this integral is in one. 

And for odd n so when n = 2k + 1 so Q h has a different expression. So this is integral and 

this is Q h defined for the positive and for all k 1, 2 etcetera.  
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And then the solution of the wave equation is simply expressed as this. So as usual again so 

the initial conditions  u x 0 is phi x,  u t x 0 is psi x. So it is important to notice that so no 

matter what the dimension is the form of the solution is very, very same. So it was in one 

function Q phi and one derivative and another Q psi. So this at least the final form of the 

solution looks simple. But the expression for Q phi Q psi they are not simple. They involve 

these complicated derivatives and in case of even in even dimensions you also have 

submitted.  

(Refer Slide Time: 25:20) 



 
So here we get an exercise so write down smoothness conditions so I have not written there. 

Again smoothness conditions depend on whether n is odd or even on phi and psi so that 

looking for a classical solution. So that u is a C 2 function we are looking for a classical 

solution so obviously we want you to be at least C 2. And the smoothness conditions on phi 

and psi are determined by the formula Q h with this final Q phi and Q psi should be well 

defined.  

 

And obviously phi requires one extra smoothness conditions that psi because there is a 

derivative involved with the formula that just like the 3 dimensional disorder. That n = 3 that 

is what we saw phi C 3 and psi C 2 and look at the expressions on this Q and figure out what 

smoothness on phi and psi are required. So that the solution is issued to function again the 

verification that direct verification so for given phi and psi, I can do to find u by this formula 

and verification is can be done that u satisfy the wave equation.  

 

And that is struggle little bit derivatives and other things so this Q phi and Q psi they already 

involved. So many derivatives so one has to take care of all those things, but it can be done. 

So I do not want to go into details because they require lots of computations. You can do 

them very leisurely. So that is and from here once we thought the formula for homogeneous 

wave equation using D’Alembert’s principle we can also handle in homogeneous equation it 

is so that is not a problem. And what is next?  
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Where we go from here? We have obtained formulas for the solution. What is next? Now that 

question cannot be asked. I just want to remark on 2 things here. So obtain L p - L q 

estimates. So, assuming that the initial data are in some L p space p can be cube so for 

various range of p and q. So, obtain similar estimate for the solution using the Kirchhoff 

formula.  

 

And this is already hard analysis so, not at all even though we have an explicit formula for 

the solution obtaining such estimates is not at all easy. And where are these used? These are 

used in the analysis of non-linear wave equation. So, which are perturbations of the wave 

equation.  
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So, we have this part and now you perturbate by this a ij. So, these are functions of the first 

derivatives, u and x have this. So, the analysis here means want to prove the existence of a 



solution and for how long it exists whether it exists for all time or not all those questions and 

in the analysis of that these L p estimates play an important role. And the second one I want 

to mention so for this is linear elasticity. So, the displacement vector so this is in the physical 

space r 3 and the displacement vector u also has 3 components. 
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And this is again given by a second order linear system. So, now it is no more an equation but 

it is a system. A system of 3 equations they are all coupled between this u 1 and u 2, u 3. But 

some by suitable transformation we can reduce those equations to wave equations. So, again 

the formula we derived comes handy even in handling this system of linear elasticity. And 

there are also studies you can see in the literature. So, now you add thermal effects so this is 

generally referred to as thermal elasticity in the literature. 

 

We want to see the effect of heating the elastic material and then you add a heat equation. 

Apart from that system you also have add heat equation. It is no longer cosine system but it is 

no longer hyperbolic. So now you have a system which is mixed one hyperbolic parabolic. 

So, we have to combine the techniques of both the wave equation and the heat equation to 

analyse systems.  

 

Not only our systems; so far we are not talked about systems at all our single equations. So 

that is what I just mentioned 2 things here, There are many, more things and in the next class 

we will analyse an example of a mixed problem for the wave equation. Thank you. 


