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Hello everyone, welcome back so we will continue the discussion of the wave equation in 

more than 1 space variable in the previous class we derived a formula for the solution of the 

wave equation in 3 dimensions which is called Kirchoff’s formula and then now we use the 

same to derive a formula for the solution of the wave equation in 2 dimensions and this is 

known as method of descent and is due to Hadamard.  

 

So we start discussing of the 2 dimensional wave equation so in the previous class we also 

using the Kirchoff’s formula we observe some qualitative properties like domain of 

dependence of the solution and range of influence of the initial data and Huyghens principle 

etcetera.  
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So now we start discussion of the wave equation in 2 dimensions so we use some temporary 

notations here. So, we write Laplacian sub 2 for the 2 dimensional Laplacian and Laplacian 3 

for the 3 dimensional Laplacian so we will be going from 2 dimensional to 3 dimensional 

etcetera, so first we will make some simple observations. So if u which is equal to u of x 1, x 

2, t satisfies the 2 dimensional wave equations. So, we can treat this u as an independent 

function of the x 3 variable so it also satisfies the 3 dimensional wave equations.  

 

So we can just take that u is independent of x 3 so this del square u / del x 3 square will be 0. 

And conversely if we have a solution to the 3 dimensional wave equation v of x 1, x 2, x 3, t 

then if I restrict to the plane x 3 = 0 or any constant you can put that and then this restricted 

function now we said 2 dimensional thing. So, this u satisfies the 2 dimensional wave 

equations so these are the simple observation. So we are now going to construct a function 

which is satisfies the 3 dimensional wave equations and by this restriction we obtain the 

formula for the 2 dimensional wave equations.  
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So now you consider the initial value problem 2 dimensional thing so as observed here so this 

if we define this v of x 1, x 2, x 3, t is equal to this u of x 1, x 2, t so u that satisfy the 3 

dimensional equation and essential data are again independent of the x 3 variable and they are 

the initial data of the function u which we are looking for a formula.  
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So now that V satisfies the 3 dimensional wave equation and now we find that formula for 

the solution of this 3 dimensional wave equation using Kirchoff’s formula and then we 

recover our u by putting x 3 = 0 maybe a little hurried here. So this first you write this 

formula for the solution of the select so use Kirchoff’s formula v of x 1, x 2, x 3, t using this 

initial conditions which are independent of x 3 variable and again we are more interested only 

in this V of x 1, x 2, 0, t.  

 



So you go back to Kirchoff’s formula which is so this is Kirchoff’s formula now so this is a 2 

dimensional surface integral in 3D so that so we use slightly different notation here so not to 

be confused. So let us write down the expression for v of x 1, x 2, 0, t using Kirchoff’s 

formula.  
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So this is nothing but so let me again stress that so this is nothing but  V of x 1, x 2, 0, t so 

this is surface integral in 3D over this sphere and S the integrand this psi of y 1,y 2 just 

observe this one so this does not depend on y 3. So, we write this surface integral as a 2 

dimensional integral and that is easily done so look at this surface so I am using here y tilde 

on this is every tilde here. So, this is in 3D and there is known x 3 here because we are taking 

the x 3 = 0.  

 

So it is just y 1 - x 1 square + y 2 - x 2 square + y 3 square and that is equal to c square t 

square that is we are on that surface. So we convert this surface integral into a double integral 

and that is easily done. So we rewrite this expression as y 3 square = c square t square - y 1 - 

x 1 square - y 2 - x 2 square and so if you recall how the surface integral is defined so now 

this one so as y 1 and y 2 vary over this circle.  

 

So y 3 over this sphere and so there is one upper hemisphere and there is lower hemisphere 

and both contribute the same amount to this integral suppose you to consider just one integral 

the other one is also very similar except for this time derivative. So, how do you compute this 

surface major. So as surface major simply is this formula so that is a double integral. So if 



you simplify this so using this expression for y 3 square you compute this del y 3 / del y 1 

and del y 3 / del y 2 and do some simplification.  

 

It turns out to be ct / mod y 3 again y 3 can you that square and this y 1, y 2 they are in this 

circle centered at x 1, x 2 and radius ct. So the surface integral, forget about this constant for 

the timing. So, the surface integral is nothing but twice as I said so there is one upper 

hemisphere, y 3 positive and y 3 negative they contribute the same amount so that is why it is 

2 here and so this now it is a double integral. So let me just such that so it is a double integral 

and y 3 I am replacing by this expression, so what mod y 3 square root of c square t square 

minus those root of this.  
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So let us write that in a simplified form so, let us write that as r square so r square is nothing 

but y - x square, which is y 1 - x 1 square + y 2 - x 2 square. So, note that this is the section c 

t just ball centered at the x and radius c t. So, let us use here just x 1 so similarly, for the other 

integral. So, phi replaced by xi there so we have another one here, so if you put back all this 

expression so now we have converted this surface integral and written as double integral.  
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And finally we obtain this so in the 3 dimensional case the Kirchoff’s formula involve a 

sufficient integral source, but in 2 dimensional case so you already start seen the difference. 

So this integral are over the ball so it is not circle but the ball just write this. So, this x this 

radius is ct, and the integral is over this 2 dimensional object and that makes the domain of 

dependence and other qualitative properties very much different from the 3 dimensional 

assumptions so for example, see the domain of dependence just mention that. 
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So we are interested to know how the value of the solution at a point u of x, t or t positive 

depends on the data are the initial line t = 0, the initial space t = 0. So, this is t = 0 so, we are 

interested in knowing how in this dependence of u on the initial condition. So, if you again 

look at the formula so, we required that entire ball so, this is x here x, 0 t = 0 so, this radius ct 

this entire disc earlier in 3 dimensional case it was only the sphere the circumference. So 

similarly you can write down the range of influence etcetera. 
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And now let us see so the support of the solution at a time positive how it depends on the 

support of the initial line. So, again assume that support of phi and psi and same ball of radius 

rho centered at origin and similar calculations will show you that the support solution 

continuity rho + ct. So, this is all we can say in the 2 dimensional case so just cannot say 

anything further.  

 

Because of this; integral which depends on the entire simple physical situation depicting this 

2 dimensional wave propagation. So consider a large lake and you throw a pebble in the 

water under calmness conditions that wind is not blowing and other things. So, you see the 

waves never vanish though their amplitude will become smaller and smaller, but they will 

never vanish and this we call this Huyghens principle in the weak form and as we see little 

later that this persists in all u and t case this only n = t we are done here.  

 

But if so, this Huyghens principle in the week for persists for all you u and t demand the 

wave equation and Huyghens principle in the strong form persists for all our demand for this. 

So, there is another interesting application of this method of descent to the telegraphic 

equation perhaps I will come to that point little later.  
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So, now let us discuss the inhomogeneous so if you recall in the first part of this course we 

have done this in detail for the 1 dimensional wave equation and same principle holds here. 

So again IVP, so u tt - c square u equal to now take a function of and so this is usually called 

forcing term or inhomogeneous term so this x is R n. So let me write them though we have 

derived formula for only n = 3 and n = 2 so, but this principle holds for all the dimension so 

this is also refreshing of what we have done for the 1 dimensional wave equation.  
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So, this is what we are now describing is called Duhamel’s principle and is a very useful tool 

in obtaining a solution of the inhomogeneous equation from the knowledge of homogeneous 

equation not only for the wave equation, but many evolution equations u in one including 

head equation. So first observe so we exploit linearity so we consider 2 problems so, one is 

inhomogeneous equation with 0 initial depth and another one we consider homogeneous 

equation.  



 

So, let me do that w, now homogeneous equation but with general initial conditions so, we 

split the given initial value problem. So, inhomogeneous equation and arbitrary initial 

conditions; into 2 problems one inhomogeneous equation with 0 initial data and another one 

homogeneous equation with given initial data. So phi and psi appear here and this is seamless 

so using linearity of the equation it is very easy to check that then u = v + w. 

 

So, whenever there is linearity will always try to exploit and generate simpler problems to 

solve. So this one at least for n = 2 and 3 so the solution is given by Kirchoff’s formula so, it 

is sufficient to consider this inhomogeneous equation with 0 initial data and for that, we apply 

Duhamel’s principle. 
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So thus consider again let us go back to thus consider this simpler IVP so this is u tt - c 

square Laplacian u and f of x, t is 0 initial. So, let us this one and as solution of this IVP 1 is 

obtained by reducing it to an IVP with homogeneous equation and some special initial data 

and that is what is referred to Duhamel’s principle.  
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So, this is the related I repeat so consider this different rotation U tt - c square Laplacian u E 

0 so, homogeneous wave equation and very this so again R n not t positive but t bigger than s. 

And we describe initial conditions not at t = 0 but at t = s so U t x, s this is given by f of x so 

this one x is R n. So, this is only a translation in t variable so you just replace the formula by 

so you will replace t / t - s and this is same as this f so this.  

 

So now we are switching this s so this is just a function of x, s and we will try to determine 

the solution for t bigger than s and s is greater than or equal to 0 arbitrary but for the time 

being it is fixed so we as you we vary s we get a family absorptions working so denote this 

solution by U of x, t and just to stress the dependence on the variable s you also write this as 

U of x, t.  
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So for example for n = 3 we have U of x, t, s I read from the Kirchoff’s formula so here phi 0 

and psi is given by this function. So this go back to remember constant so here it is by 

example 1 / 4 pi c square t. So now we have to replace t / t - s and now this integral there is 

no change there so this is again surface integral so this y - x = c t - s. So, wherever t is there 

just to replace it by t - s so this is surface integral.  

 

So now this one this f of y, s ds so that is surface major on this sphered so, this is the solution 

of this auxiliary initial value problem. So, from the given initial value problem we construct 

for this one homogeneous equation and the initial condition is coming from the 

inhomogeneous equation term original problem if you want to recall it so this is solution now. 

So, this is again for t bigger than s so what is the connection of this big U? And our solution 

small u so here comes the theorem. 
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So this is the Duhamel’s principle the solution of one is given by so u of x, t equal to so 

integral 0, t this x, t s ds. So, in the case of 1 dimensional wave equation in detail we verified 

that this is indeed a solution of problem 1. So, similarly in this case also one and to do that it 

is not immediately clear why this U given by this integral is solving this problem so 

inhomogeneous equation and with 0 initial conditions.  

 

So, you just try to look at the proof in 1 dimensional case so the verification straight here 

verification that u solves IVP 1 was done for n = 1 the same procedure works. So, when you 

are differentiating with respect to t we have to exercise a little caution because t is also in the 

integral limit and also it is in the integrand. So, one has to differentiate with change but with 



respect to x there is no problem because there is no x in the integral sign. So that which can 

simply take the differentiation with respect to x straight way inside the integral sign. 
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So let me just do that little bit so for example here so, sketch how you do that so as I said 

there is no problem with x variable. So, you just take Laplacian u simply 0 to t Laplacian U x 

t, s ds, but the capital U satisfies this homogeneous equation. So, you immediately see that 

Laplacian u is equal to so, this is 1 / c square 0 to U of t t x, t, s ds now just the 2 derivatives 

here so, you can just so similarly you can work out this U sub t what happens to sub t? 

 

So u sub t x, t so first u differentiate this t in the integral sign and that produces so, U of x, t, t 

plus you have the other one so, U t of x, t, s ds and this one by the initial conditions now this 

is your because you are taking this 0 then t = s this is 0. So, instead of s we have here tt so, 

this is just 0 so this is 0.  
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And the next one so u tt x, t I know this one is U t x t t + 0 to t U tt and this is where you will 

get this f of x, t and this one as we have seen already here because it is just c square and that 

completes the verification. So, once we know how to solve a homogeneous equation, so it is 

not difficult to solve any associated inhomogeneous equation so I have not written here the 

precise conditions on the right hand side the forcing term f, but you can write down so what 

conditions were required in order that this u is a solution.  

 

So that is an exercise so write down the smoothness conditions on f so that u is a c square 

solution. So with that I will just conclude this lecture. And the next time we will see another 

interesting application of the method of descent to telegraphic equation, thank you. 


