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Hello everyone, welcome back again. In this lecture we will begin discussion on wave equations 

in higher dimensions. So, in the next few classes this will be the main discussion and also 

discussion will be mainly on the initial value problem. So, let me again state it, so this is the 

wave equation in higher dimensions. So, again a second order equation, so u tt - c square 

Laplacian u = 0, for x in R n and t positive and at t = 0 in that stage that is x space. 

 

So, we provide the initial conditions, so that is the initial position and initial velocity. So, this 

equation also arises many physical processes, so as we go on we will discuss some of them. And 

as usual, so this Laplacian, so sometimes to stress the dependence on the variable we also write 

that as Laplacian sub x and that is the second or operator Laplacian and c is a given constant. So, 

before we go further in the discussion of the essential value problem, let us recall what we have 



done for the case n = 1, so that was in the first part of this course. So, the important formula we 

derived for the wave equation in one dimension and that is D'Alembert’s formula. 
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So, let me write it, so this is given by u of x, t = half of phi of x + ct + phi of x - ct + 1 by 2c this 

integral x - ct to x + ct psi y dy, so phi and psi they come from the initial conditions. So, the one 

difference I would like to remark here between this formula and the formula for the solution of 

the heat equation and also Poisson equation we have discussed. In that, so any solution of this 

wave equation in one dimension satisfies this D’Alembert’s formula. 

 

And conversely any function u defined by this D’Alembert’s formula satisfy the wave equation 

with these initial conditions, so that is the difference. So, there is, so any solution automatically 

satisfied this D’Alembert’s formula and that is not the case with for example heat equation. 

Though we derived the Fourier Poisson formula for a solution, but in general that is not the only 

solution, there we have seen that uniqueness is not there. 

 

But that is not the case with this wave equation and there is uniqueness here. So, at this stage, I 

also want to remark regarding a fundamental solution. So, in the first part of this course and even 

in the second part we have been talking of fundamental solutions for the Laplace operator and 

also heat operator. But we are never talked a fundamental solution for the wave operator. It is not 

that the wave operator does not have a fundamental solution, it has. 
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In fact it is a celebrated theorem of Malgrange and Ehrenpreis. So, just let me state for the record 

who is states that every constant coefficient linear partial differential operator PDO L has a 

fundamental solution E. So, the meaning of the statement is that this when you operate E when 

you operate the given partial differential operator on this fundamental solution, so that is L of E 

who should get this delta function. 

 

And in the case of Laplace operator and also heat operator we have seen. In general situation this 

fundamental solution is not necessarily a function. So, we have to enhance, we have to go 

outside the realm of functions. So, in case of Laplace operator and heat operator the fundamental 

solutions are c infinity function you except a singularity at one point.  

 

But in general the fundamental solution given by this theorem need not be a function and it is can 

be a distribution and that is where the trouble starts, so we have not developed any concept 

regarding distributions and their operations, their algebra, their calculus. So, that is very modern 

part of this subject this VDE subject. 
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So, that is why you are not discussed in detail about the fundamental solution of the wave 

operator, I just tried to indicate what that is in case of n = 1. And more importantly this 

Malgrange theorem, Ehrenpreis theorem depending on the nature of this fundamental solution, a 

new classification arose. And now we classify the class of linear partial differential operator of 

any order, not necessarily second order of any order depending on the nature of this E. So, they 

are now classified as hypoelliptic operators and non-hypoelliptic operators. 

 

So, this Laplace and heat operator they come in the class of hypoelliptic operators and wave 

operator is a typical non-hypoelliptic operator. So, let me just indicate what this fundamental 

solution for the wave equation in n = 1 and do we try to rate this D’Alembert’s formula in terms 

of that fundamental solution. So, for that purpose I define this, so it is fundamental solution of 

the wave operator but again I will not go into the details how this comes and how one had do it 

in a general case? 
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So, there is just take this as a kind of (()) (09:22) procedure. So, define this function k w? It is a 

function of 2 variable section t, for t positive, so that as a function of x is nothing but this 1 by 

2c, so that constant comes. So, this is the characteristic function of this closed interval -ct to ct. 

So, taking t positive and c the positive constant data appears in t wave equation. So, 

characteristic function for a general subset is defined by A of x = 1. 

 

If x belonged to A and 0 if x does not belong to A. And now with this that w is for wave, so this 

characteristic function fundamental solution for the wave equation. And now you compute this 

convolution. So, take any nice function psi a function of x only. And you compute this 

convolution and that convolution by definition is given by this integral. But now that k w, just so 

one more step here. 

 

So, K w x - y, t is 1 - ct less than equal to x - y less than equal to c otherwise it is J. So, the 

syntax is restricted only to this interval -ct to +ct and then you make change a variable. So, from, 

so you are integrating with respect to y variable, so you make change of variable and finally you 

arrive at this integral, so integral 1 by 2c, so that 1 by 2c is factored in this fundamental solution 

and that is 1 by 2c to x - ct to x + ct. 

 



And that is precisely if you look at the D’Alembert’s formula, it appears here. So, this part now 

equal to K w of t x psi. So, what about the first part? That first part, so again you take the 

convolution of K w with phi. 
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So, we get that, so just now we computed that convolution, so instead of psi we are taken on phi. 

And now you differentiate with respect to t, so if we differentiate this expression we get 

precisely, so there is a c there that c cancels here when you differentiate with respect to t and we 

get half phi of x + ct and + phi of x - ct and that is the part in the D’Alembert’s formula. So, 

therefore, we rewrite the D’Alembert’s formula, just recall that. 
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So, in terms of this K w, so that is d by dt of this convolution K w with respect to and the 

function phi and then there is no differentiation, so only convolution with respect to psi variable. 

And this is written as this d by dt of this but this has to be interpreted in distributions. Now this is 

just for the sake of information, we are not going to develop distribution theory in this course. 

And so when we learn that distribution theory, so this turns out to be half del z by +ct –ct. 

 

So, this is Dirac del, so this is the reason we did not have any discussion on the fundamental 

solar (()) (15:33). Because we have to develop these new tools and then the calculus related to 

that, so that will be really an advanced course. What I would like to remark is, so this is what we 

derived for the case n = 1 D’Alembert’s formula and now we wrote that in a different fashion 

using this fundamental solution. And this form of the solution is retained for all dimensions, so 

that is the important thing. 

 

So, there will be a K w, so that depends on the dimension, so we will have one convolution here 

and then we take the time derivative and to get another convolution there. So, the solution even 

in any dimension is given by such a representation, so that is one important remark I want to 

make. And nature of this, though I am not explicitly be stating that but when you write the 

formula for the solution of the wave equation in higher dimensions, you will recognize the form 

of this fundamental solution. 

 

And that is very much dependent on the dimension n and in all dimensions, it will have a 

particular qualitative property which is very, very different from fundamental solution even 

dimensions. And, so even in one dimension, so we will see it later that there is no resemblance of 

this fundamental solution in one dimension and higher dimensions. 
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So, now we are going to derive a formula for the solution of the wave equation in higher 

dimensions, so that is our next agenda. So, unlike the case n = 1, we immediately do not have 

any idea how to proceed. So, to get some ideas and motivation, so let us start with some simple 

solutions. So, begin by looking at radial sources, so if there are possibility of finding a radial 

solution to the wave equation. 

 

And this is certainly a possible way when the initial conditions phi and psi themselves are radial 

functions. And then in that case certainly you can look for a radial source and so this dependence 

on of u on x is only in the radial direction, so it is just a function of mod x. 
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And in that case, the Laplacian you already seen this, so the Laplace operator in the, so this is r = 

ok that so r =1 x. So, in this way we have reduced the given wave equation mean n + 1 variables 

into an equation which is 1 + 1 variable, so this is essentially reducing equation. So, let me write 

that 1 + 1, so there is already a t variable and now we have only the r variable. And if this factor 

were not there it simply wave equation in one dimensions. So, in this presence of this a first 

order derivative with respect to r it is no more an wave equation. But in some cases it can be 

reduced to one dimensional wave equation by some suitable transformation. 
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So, for a (()) (21:19) we will see later, but for the time being just consider the case n = 3 and so 

this coefficient will be 2 by r. And this simple transformation, now you just put this v = ru and 

then use the Leibniz rule. So, I want to compute the second derivative of v, so just leave the 

Leibniz rule with respect to r. So, there is no problem with t because this is again multiplying by 

r, so t derivatives of v are same as t derivatives of u that multiplied by r. 

 

So, this del square v by del r square = 2 del u by del r + r del square u by del r square. And now 

when you substitute these computations here, you immediately see that v satisfies this first order, 

so this is wave equation in 1, now the variable r and t. So, we can immediately use the 

D’Alembert’s formula to write down the solution for this v. So, obviously the initial conditions 

are t = 0 for u and u sub t are transformed to initial conditions on v. 

 



So, using those initial conditions, we can immediately write down the solution v. And once we 

know that solution v, so simply divide by r and we get an expression for this solution of u in this 

particular case. And this gives us good motivation, so somehow bring in an extra variable r in 

which case the given wave equation is reduced to an equation in 1 + 1 variables and by suitable 

transformation eventually to 1D wave equation. 

 

So, our next target is how to transform the given wave equation into a one dimensional wave 

equation. Because we know a lot about one dimensional wave equation and that will help us in 

deriving a formula for the solution even in higher dimensions. And such a procedure of 

transforming the given wave equation in n dimensions to an equation in just 2 variables is 

provided by this method of spherical means. 
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So, let me again recall what is spherical mean of a function? This we have seen in a lot in the 

study of Laplace equation and Poisson equation and very fruitful one. And we will also see that it 

is also fruitful in dealing with this wave equation in multi dimensions. 
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So, let me just again recall that what is the mean value of a given function h? So, h is a given 

function from R n to R, a c 2 functions. For the definition we do not need c 2 but we want to do 

some computations, so that is where I need c 2 function. So, even just with continuity we can 

define the spherical mean function. So, we denote spherical mean function of h by M h, so it is a 

function of 2 variables x and r. 

 

So, this is nothing but the mean value of the given function h over a sphere of radius r centered at 

x. So, this is mean value of h over a sphere of radius r centered as x. And as we proceed further, 

it will be clear that, so this is the one new variable we are looking for. So, this is just to begin 

with this a positive real number, so we soon extended it to all real numbers. So, x, essentially 

plays the role of a parameter, so in the discussion of the equation satisfied by this M h, x hardly 

plays any role as we can see further. 
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And sigma n is the surface area of the unit sphere and it is numerical value is given by this 

number 2 pi n by 2 divided by gamma n by 2 and gamma is the Euler gamma function. So, in 

this definition this M h is defined only for r positive but by simple change of variable will 

immediately see that is defined for all r. So, you just change the variable here, so you put I 

replace this y by x + r Xi and Xi varies over the unit sphere, change of variables this r to the n - 1 

just vanishes. 

 

In this form M h is now define for all r and by changing r to -r and then we can change the 

variable Xi to -Xi and this is your sphere, so there is no change there. So, you immediately see 

that as a function of R this mean value function M h is even function. And the good thing about 

this mean values, so we can also recover the function we started with namely h by taking limit as 

r goes to 0. So, these 2 properties just, so it is an even function of R and we recover h by taking 

limit r = 0, so these 2 are important properties. 
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And because this is an even function, so we will also see that, so del by del r, just work out it is 

0. 
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So, we are interested in finding the second derivative of this mean value function M h with 

respect to r, so that is what is. And you want to relate that how it is related to the second 

derivative of h? So, we will begin some computations, so if we use this form of the definition, 

then it is difficult to differentiate with respect to r. But this change of variable now r has entered 

the integrant, so there is no r on the domain, so it is easy to differentiate. 

 



So, we just take the differentiation sign and to the integral sign and so that is del by del r is equal 

to. So, now r is here, just take the del h by del i and then when you differentiate this variable with 

respect to r you get a Xi i. And that certainly you can write it as, so remember, so this Xi the 

variable which we are integrating, so just exercise some. 
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Here there and now we want to apply the Green’s formula. So, let me again write it in the side 

here, so we have a Laplacian u, so this is volume integral and this is just, where u. So, this is the 

normal derivative, this is dS and this is just nothing but grad u tau. And since this is the unit 

sphere the unit normal is in the direction of Xi itself, so this is mu i in this case. 

 

So, it is of this form but only thing is you have worry about this r coming there, so this produces 

an extra r here that is the only difference. And now this is volume integral, so this is surface 

integral and using Green’s formula that we have converted into volume integral. And now there 

is r missing here. 
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So, this is r and the variable of integration is Xi, so that is nothing to do with the x, so you just 

bring this Laplacian operator outside the integral and rest of the integral there. And again that 

you change the variable, so you just write that h y over surface, this is surface integral. So, let 

me, this is volume integral, no problem and this volume integral using spherical coordinates; we 

just write it like this. 
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And when you do that change of variable here, you get a factor of r to the n, there is already r 

there, so this is just 1 by r to the n - 1. So, now multiply both sides by this r to the n - 1, so that is 

left hand side is already del by del r M h x, r and this one I want to write as this surface integral 



as M h x rho. So, the only thing is there is a factor 1 by rho to the n which is not there, so that is 

why you are multiplying by this extra rho to the n - 1. 
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And now you just simply differentiate one more time, so we get this, so that when you 

differentiate with respect to r, so you just comes out to be r to the n M h x, r and again this r 

index is nothing they are independent. So, this Laplacian operator I can move anywhere. So, this 

is the relation between this second derivative of the spherical mean function with respect to r. 

 

And the Laplacian of the given function h and this is called Darboux equation. And we will 

continue from here next time. And how this should be applied to the wave equation? So, 

ultimately it is for the purpose of getting solution of the wave equation and we will see how this 

Darboux equation is applied to the solution of the wave equation, thank you. 


