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Heat Equation-4
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In the previous class we were discussing mean value property for the solution of heat equation.
Let me again state that and we almost completed the proof.
(Refer Slide Time: 00:48)
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So, here is the statement of this mean value theorem. So, if u is solution of the heat equation in a
region in R n cross R, then for all x, tin Q u X, t is equal to this double integral. In factitisn + 1

dimension integral and we discussed why it is called a mean value property because of this

reason.
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This integral = 1, so this weight is 1, so this u x, t is the mean value of u y, s over thisE x, t, r
that is heat ball with this weight.
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So, I almost completed the proof just one last line.
(Refer Slide Time: 01:51)

© Wete E(o0;r) = E(r), ¥?©

Need 1o Prove :
o0 = 7 J[ w9 2y ds

Er)
(ry0, EM C Q)

2
AGE (\3'5\' Se‘.{';/“, O—S
. Ap—
¢ Can[nlsr -3 )

- \ ((Al \“l‘zl A

And the proof started with first some reductions, so we can assume thatx =0inrnandt=0inr

and that is just by translation and this integral does not change. So, we have to prove thatu 0, 0 is
equal to this integral.
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So, for that we just forget this factor 4 consider this function chi of r defined by this integral and

we showed that chi is a constant function of r.

(Refer Slide Time: 02:45)

O

- o
140}

12 ﬂzg“(rz.rm +°“(2vt>]“é*f "

700 i |

-4 (%) e
W_/

ez ik
r"F(

So, that involves some computation.
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And only in the last part of the proof we use that u satisfies the heat equation. So, this del u by
del s is replaced by Laplacian u.
(Refer Slide Time: 03:09)
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And proof mainly relied on divergence theorem and this important function coming from the
nature of the set a heat ball E x, t, r.
(Refer Slide Time: 03:27)
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So, once we know that chi is a constant function, so this chi of r = limit chi rho 0 tends to O.

.p\,
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But then we can write this chi rho by 4 = 1 by 4 to the n this integral over E rho and then you add
and subtract this u 0, 0 and because of that integral is 1, so this is just 1. And by continuity of u
the first integral goes to 0 as rho tends to 0, so we are just left with u 0, 0 and that is what we

wanted to prove.
(Refer Slide Time: 04:09)
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So, again let me just recall this heat ball E X, t, r. So, x is in R n, t is a real number and r is a

positive real number. So, if what is E X, t, r? So, let me just again recall that, so this is set of all v,
sin R ncross R n R such that s is less than or equal to t and this is the heat kernel, so x, t, y, s
bigger than or equal to 1 by r to the power n. So, if y, s belongs to E x, t, r, so using the
expression for the heat kernel we saw that this is equivalent to, so s lies in the closed interval t - r

square by 4 pi t.

And then y it lies in the ball and x - y square, so y lies in the ball with centre x and radius square
is given by this number log root of 4 pi, you can check that, this is oh some end is missing, so let
me somehow is missing, so it is here only, let me just go there and stop rewriting it, it is here.
(Refer Slide Time: 08:20)
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So, this is for 0 otherwise you will get x - y square and so here | have taken thisx =0andt=0
but that just translates.
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So, thisis n log r + - let me write it here n by 2 log 4 pi t - s. So, using this domains for s and v,
so it then easy to, so not difficult to evaluate, if this integral 1 by 4 into r with n which is n + one

dimensional integral mod y square + S square dy by ds. So, since the integrant is, now negative
we can integrate as an iterated integral. So, first one integrates with respect to y using this bound
and then you integrate with respect to S. And even integration with respect to y, so since this is a
radial function, so we can use spherical coordinates.
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So, with this we move to another interesting property of the solution of the heat equation and this

is referred to as backward uniqueness theorem. So, let me first take the theorem and then | will
remark on it is interesting properties. So, again let omega be a bounded open set in R n with
smooth boundary del omega and t is any positive number and consider this cylinder. So, this
smooth boundary is required just because we want to integrate the parts and the divergence
theorem should be valid, only for that reason we are assuming that smooth boundary.
(Refer Slide Time: 12:35)
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Let u 1 and u 2 the solutions of the following heat equations, so del t u i = Laplacian u i in omega

tand u i = g on del omega cross 0, T. So, this is a Dirichlet boundary value problem. So, the



important thing here is both u 1 and u 2 satisfy the same boundary condition g, so g is not
changed.
(Refer Slide Time: 13:19)
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Then the statement of the theorem is if u 1 x, T =u 2 x, T for all x in omega then u 1 is

identically equal to in omega T. So, that is why it is called uniqueness theorem, it is backward
because at a positive time the condition is given, so namely that u 1 and u 2 are equal. And the
conclusion is that u 1 and u 2 remain same for all T less than T. So, the importance of this
theorem is that no assumptions on the initial conditions on u 1 and u 2 are made in the statement

of the theorem.

So, there is no statement regarding the initial conditions on u 1 and u 2. And we have already
seen for the initial value problem to obtain a uniqueness result we have to make some growth
assumptions on the solution. And in this theorem no such assumption on the growth of u 1 and u
2 is made. And yet this uniqueness statement is made in the results, so that is why it is interesting
and also important with all site minimal data we are claiming the uniqueness of the problem.
(Refer Slide Time: 15:09)
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So, the proof uses energy method and this energy method we also use in wave equations. And

this heat equation also enjoys some energies, energy estimate we can derive on them. So, for
some again reduction since the problem is linear, so linear equation and linear boundary
condition, so put u =u 1 - u 2 then u satisfy the heat equation in omega T. And since g is same so
u = 0 on the boundary del omega cross 0, this is the boundary of the cylinder.
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And here comes the energy, so E is the energy, so put E of T = integral omega u square X, t dx.
So, you integrate only with respect to X, so this is a function of T alone. So, and this represents
the total amount of heat at time t that is in the domain omega. And now we are given that E of t



0, if you see the hypothesisu 1 of x, T=u 2 of X, T that T. So, u = 0 t = capital T, that is given to

us.

And we need to prove that E t = 0 for all t less than T. Because then this integral is positive, so if
we prove that this is 0 then this is 0 everywhere and now we proceed to do that. And now we use
this energy and so that is a function of t alone, so you differentiate with respect to t. So, just see
how the energy varies with t and this very simple thing, so this you get 2 u t and u satisfy the
heat equation.

So, u t is replaced by Laplacian u and then u integrates by parts, so you get -2 integral omega
grad u square dx. And there are no boundary condition as u = 0 on the boundary of the cylinder,
there are no boundary conditions. So, we differentiate one more time, so second derivative of E
with respect to t d square E by dt square and again you use the last expression, so you get another
2 there, so -4 grad u dot grad u t.
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And again integrate by pars, so you get u t Laplacian u. And again there are no boundary
condition as u is 0. And now again you replace u t by Laplacian u because u satisfy the heat
equation, so we will get finally 4 times integral Laplacian u whole square dx. And now we

compare this the first derivative of the energy with the second derivative, so some simple



estimate. So, dE by dt is | am just using this expression dE by dt = 2 integral u Laplacian u and
when | take square on both sides, so | get 4 this integral whole square.
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And here 1 use (()) (19:31) inequality and this integral is less than or equal to integral u square dx

to the half but there is a 2 there, so it becomes 1 and similarly that 1. And now this first integral
is nothing but the energy integral, so E t is just integral u square dx. So, if | take this 4 inside
here then that is precisely d square E by dt square. So, we have this dE by dt whole square is less
than or equal to E t into d square E by dt square.

And now to complete the proof we assume on the contrary that E of t is positive for E is always
non negative, so E is positive for some t less than T. So, we will get a contradiction with that
assumption and then by continuity so we try to find the first t less than T with this property and
that just by continuity there exists a sub interval t 1,t2in 0, T. So, t 2 could be T such that E t is
positive for all t in this semi open interval t 1 tot 2 and E to t is 0. So, this t 2 can be t itself that
is given to us, so E of T is 0, so certainly there is one such thing.
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And now since E t is positive in this interval, we can take logarithm. So, for t in this semi open
interval put F of t = log of E t and now we want to convert this second derivative of F, the second
derivative of E t and that simple calculation yields us d square F by dt square is equal to, so there
is numerator and denominator, denominator is E t square and numerator is E t into d square E by

dt square - dE by dt whole square.

And that is non negative by the estimate we obtained for dE by dt square. So, F is a function of
one variable such that it is second derivative is non negative in this interval. And that is
equivalent to F being a convex function. So, then this because of this condition on the second
derivative F is a convex function.
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And by the definition of the convex function we have that for any t in this semi open interval and

any alpha between 0 and 1, we have F of alphat 1 + 1 - alpha t less than or equal to alpha Ft 1 +
1 - alpha F of t. And if we translate again back to the energy function E of t, so we have to take
exponentials, so we take the exponential both sides and that yields this inequality for the energy.
So, E of alphat 1 + 1 - alphat is less than or equal to E of t 1 to the alpha E of t to the 1 — alpha

and this is true for all t in this semi open interval.

And now on the right hand side you just lettto t 2, let t goes to t 2 and right hand side gives us 0
and that means we have that E of t = 0 for all t in this t 1, t 2 in that semi open interval. And that
is a contradiction to our assumption, we have assumed that E t is strictly positive in this semi
open interval and that contradiction completes the proof. So, these are the some interesting
qualitative properties of the heat equation that is fun.
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And next we discuss one example again regarding heat equations for this. Example, so let me

state the problem and we will discuss the details perhaps in the next class. So, this is a mixed
problem, so this is the physical situation, so we have a circular cylinder in three dimensional, 3D
circular cylinder. So, x square + y square is less than or equal to a square and z is in R. So, ideal
situation, so this is the z direction, so we have this so infinite slope. So, this is (()) (26:59)
omega.

(Refer Slide Time: 27:05)
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And initially so at t = 0, so this metallic cylinder is heated, so assume that u = 1.
(Refer Slide Time: 27:40)
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And the boundary is maintained at u = u 0. So, here | should clarify this one, this initial

condition, so let me just say what that is. And then the problem is to analyze what happens for t
positive. So, initial condition, so this is just u x, y, zat = 0 is u 1 for x square + y square less than
or equal to a square and z R, u 1 is just a constant. So, we see that the initial condition and again
what is the boundary condition? Boundary condition u of X, y, z, t = u 0 for all x, y such that x
sguare +y square = a square and again z in R and t was 0.
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So, we see that this both initial and boundary conditions do not vary with z variable. Thus the

problem reduces to two dimensional heating equation. So, du by dt d square u by del x square +

del square u by del y square. So, here again | am assuming the diffusivity coefficient is 1, so one



can put a number depending on that physical material. So, for simplicity again | am taking this
diffusivity constant 1. So, we will continue the analysis of this initial boundary value problem in

the next class, thank you.



