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Lecture - 03 

Laplace – Perron’s Method 

 

Good morning, we continue the lectures on Laplace Perron’s method regarding the existence 

of the solutions of treasury boundary value problem. So, what we have introduced in the last 

class that we have defined basically the sub and super functions or sub harmonic and super 

harmonic functions for continuous functions, earlier the definitions for the C 2 functions, but 

of course we using mean value theorem you can define for continuous functions.  

 

But last week or last lecture, what we have defined you for continuous functions using the 

concept of maximum principles. And later at the end of it, what we have done is that we have 

defined a class of a sub function and for such functions we are defined. So, let me quickly 

recall we are defined few properties regarding this continuous function, regarding the 

harmonic functions, we have seen a maximum principle. 
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And then we have seen harmonic lifting, because if you have a sub harmonic function for any 

ball, you can redefine to be as a harmonic function using the Poisson integral. So, if you are 

given a continuous sub harmonic function and then you can use that continuous function 

value on the boundary, you can define the harmonic function using the Poisson integral.  
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And you define in that ball this harmonic lifting outside it is a sub harmonic function this 

function as in omega, it will be some harmonic but harmonic inside the ball.  
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We also seen the another property with all that we will be using now, the maximize in sub 

harmonic function is a sub harmonic and minimizing super harmonic functions are super 

harmonic, but not the other way. So, the minimum of a sub harmonic function need not be 

sub harmonic. And then what we have done is that we at the end of the lecture last class, we 

are defined what is a sub function a function g is in given a continuous function. 

 

We say that V is defined in omega is a sub function which is relating to this function omega 

and of course continuous functions of harmonic the important property we have defined is V 

also less than or equal to g on the omega is what we have defined there.  
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And we denoted S g is so let me recall that one S g is the set of all S g equal to set of all V in 

c omega bar at the set of continuous functions, which is V sub harmonic and V less than 

equal to g on the boundary harmonic in omega and V is less than or equal to 0 on the 

boundary of omega. And using this now, we are going to define what we have already 

defined a function ux which is what we are going to get the solution. So, let me define once 

more ux equal to supremum of V and V is the S g.  

 

So, this is my definition of loop and what we are going to show. So, there are this Laplace 

thing satisfies basically 3 properties, it is a continuous function subharmonic and V less than 

equal to g and we are maximizing that u and you expect that to be a sub harmonic, what we 

are maximizing function.  
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So, you have to prove some important thing this what about whether this S g is the so, the 

immediate claim, this is a trivial claim S g is non empty, that is very easy to prove S g is 

nonempty what do you do is that you take infimum of g over x in d omega, g is a continuous 

function d omega is comeback. This is a bigger than it cannot be minus infinity so you choose 

any constant c such that c is less than or equal to infinity, this is bigger than minus infinity. 

So, it cannot be the otherwise infimum can reach infinity so this is a constant function.  

 

So, if you define Vx = c which is a constant function then this belongs to S g. So, any 

constant function less than this minimum is in the class of S g, so S g is the nonempty 

function so, that is very important to begin with them. Now, we will state the main theorem 

this you what do we have defined now, going to be your solution to your destiny harmonic 

function not that boundary value problem it is going to be that boundary value problem.  

 

But it takes some time to produce prove, the proofs which I am going to present is a bit of 

technical so, you have to follow it very carefully. So, let me state this thing let g belongs to d 

omega c of d omega c belongs to c of d omega and S g is the set of all sub functions be as 

above and define u as again as above. Then u is harmonic that is it solves the problem that is 

not the boundary value problem proving u = g on the boundary requires little more effort this 

itself the proof is a bit delicate proofs so you have to be carefully followed this one.  
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So, let me try to give the proof sometimes even if it is delicate, it is good to learn this proof 

so, we will prove in step by step, the step one is u is well defined, this is important for us to 

see that because u is defined as an supremum function, you see u is defined as a supremum. 



So, it is possible that it can go to plus infinity here to show that that is not true so, you can 

define. So, take any V in S g that implies your V of x less than or equal to gx on d omega. 

 

And V is also subharmonic great, because V is sub harmonic so, that implies Vx is less than 

or equal to supremum of gx where x is in the boundary of omega this is true for all x in 

omega, this is may not mean value property maximum principle. So, the maximum principle 

tells you that V is in fact less than or equal to the value c, V is less than or equal to supremum 

over g. So, any x is a supremum forget it so, in d omega the supremum of that one.  

 

So, that implies that is a finite quantity is always less than so this is V is arbitrary so, taking 

supremum over V now, taking supremum V. This is for any V this is true taking supremum V 

you get the ux is less than or equal to supremum over g with x s in d omega, this is a finite 

quantity which is finite because it says so, therefore you cannot be plus infinity so, that is the 

first step.  
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So, we will do the second step, step 2 the proof of harmonic is very delicate so, to prove very 

carefully. So, what we are going to do is that so, you have a domain omega, you want to 

show that you are to prove that Laplacian of u = 0 in omega. So, what do we will ? You take 

any ball inside take any B take any ball B contained in omega and we show that is enough we 

show Laplacian of u = 0 in B. Since these arbitrary we get Laplacian u = 0. So, we are going 

to solve Laplacian of u equal to 0 in B that is what you are going to show. So that is what so, 

we will show this is your B.  

(Refer Slide Time: 11:08) 



 
So that is what we are going to do in step 3 slowly maybe step 4 so to show that for any 

domain in a ball, you take it you show that Laplacian. So, what we will do so, let me give you 

an idea and then we will prove it, the idea is take a pieces in Euclidean space. So, take any 

countable dense set. Since it is countable, the dense set, you can write it like this x 2, x 3 like 

that in B and construct these ideas, construct V which is harmonic, this is what we are going 

to show harmonic and u of x k = V of x k.  

 

Then by continuity, you do not know even u is continuous, that is a different issue, then by 

continuity prove u identically equal to V in B. Since V is harmonic in V, V is harmonic in B, 

you show that you conclude that u is harmonic in B.  
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So, let us go to the step that one, so, take any that step so, first the claim is you want to do 

how to construct this B, so that is step 4, step 4 is a claim. So, we will do a claim now first 



claim for a sequence, I do not say that it is dense set. So, take for any sequence we need this 

to be proved not just for dense set. For any sequence x 1, x 2 etcetera. So, this is a sequence x 

k, there x is a sequence V j in S g.  

 

So, there x is a sequence V j in S g such that m less than or equal to V j of x I will write down 

what is a less than or equal to m for all x in omega where and V j of x converge x k 

converges to u of x k as j tends to infinity and this happens for all k. So, all these you are able 

to construct V j in S g of course, you can always construct fixed k. So, you look at this 

function you given you look at so for this is for all x. So, once x is fixed, you can always find 

a sequence in S g which converges to that.  

 

But you want that sequence independent of x basically that is what it shows here. You want 

that for a given x k, that is what you have been given x k you should be able to find V j k. So, 

let me before that let me write down what is your m, m is equal to your infimum of g over d 

omega, and M is equal to your supremum of g over d omega so that is what you are going do 

it.  
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So, first observe so your let me go to this, so you need a proof of this claim so that is what we 

are going to do a proof by definition of supremum because ux is the supremum for each k for 

each x k, there x is V j k so constructing a sequence is C c V j k of x or V j k belongs to S g 

you can find V j k belongs to S g such that V j k of x k converges to you it this is just 

infimum. So, u of x k as j tends to infinity.  

 



So, obtaining a sequence which depends on j in k is not that difficult, and what is more 

difficulties that thing, so you do not exactly diagonalization precede your, so but we will do 

something slightly different. So, you define V j this is a V j k is in S g so, it all you get is less 

than or equal to get all that properties for V j k you get it. So, we will define V j of x is equal 

to a maximum of V j 1 of x you do a maximizing because while maximizing the sub 

harmonicity will not change it. So, you will get it V j of j of x and then this will be belongs to 

S g by this maximizing thing and because each V j i belongs to S g.  

(Refer Slide Time: 17:45) 

 
Further so, you see immediately further if for any k and if you choose j large enough j greater 

because you are trying to see what is the limit of V j? So, j greater than k but you will get it V 

j of x V j is the maximum. So, V j of x less than or equal to V j k of x that is of course less 

than or equal to ux, these are all less than or equal V j is also is the supremum from here also 

you get it all these V j k.  

 

j because it is a supremum and you are in supremum you have this V j k is always less than or 

equal to ux, because ux is defined as the supremum of such quantities. So, this you have it ux. 

So, now, V j k of x converges to u of x k that immediately implies your V j of x k also 

converges to u of x k since V j of x k converges to V j k of x k converges to u x k, you are 

already known that since this converges and it is bounded with that one.  

 

So, I have written in a wrong way V j is the maximum, so the case should be here as I wrote 

here and V j of x so, V j k of x converges since this is convergence, so this sandwich 



functions also converges to that one. And so, that is hence the claim so, you have proved that, 

so, this is the claim. So, you keep this claim now for any sequence so, you take your each.  
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Now, you use the harmonic lifting next step, step 5 you take that step 5 now you look at the 

ball here, so you have your domain here and you have your ball here this is your B any ball 

here, so look at this boundary values. So, you have V j everywhere for you take your ball 

here. So, you have your ball here, so use this value here at V j and when you have for you 

consider V j constructed to the boundary of the ball and let V j be the harmonic lifting.  

 

So, you already seen that when you V j is given using this you can define the V j inside so 

and you can define V j by the harmonic lifting because you know that how do you define this 

V j of x in B you define V j of x is equal to the boundary of B you are the K of x y and V j of 

y and which also gives you immediately you can because x cases sequencing V j is 

everything. So, that immediately also implies your V j of x k you will see converges to this 

integral V j x k converges to this one.  

 

And you will get immediately and V j is bounder converges to V for some V. So, V j not x k 

V of x since for some V harmonic because V j is harmonic in V so understand this harmonic 

lifting, so, you have your harmonic in B. So, you are working only in B, so, you have a 

harmonic lifting not anywhere else and V j x harmonic for some V harmonic because V j's 

are bounder because this boundary is always preserving an all that V j of x less than equal to 

M. So, you have your boundary here. So, you have your harmonic lifting immediately.  
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So, in particular, so, and you can show that to be V of x k, so, because but V j of x k is 

converges to, you have a moreover, you have this also, you have V j of x k converge to u of x 

k that follow second from the definition, because we do have x k is k of x k y V j of y that 

will converges that x k y V j of y that is nothing but your u of x you get immediately but so 

you have because you are V j of x k converges to u of x k.  

 

So, you see so you have because of this convergence V j of x k you will get your V j of x k 

also converges to u of x k just check if you are not convinced please check. So, that implies 

your V of x k, so this is the aim. So, V of x k so u of x for all k = 1, 2 etcetera. So, what do 

we conclude? So, what is the conclusion? Conclusion given any sequence x 1 etcetera x k, x 

2 etcetera x k there x is a harmonic in B such that V of x k is = u of x k this happens for 

called k = 1, 2 etcetera.  
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The important point is that of course V depends on the sequence x k, so immediately you can 

of course V is harmonic, but we only coincides with sequence x k. So, immediately you can 

conclude about the harmonic seeking of u immediately. So, what we need an important thing 

is what we call it continue of u. So, the next big claim u is continuous in B that is all we are 

working with only in B.  

 

Let me give the proof that so choose, so these are the choose x k you want to show u is 

continuous. So, for any converging sequence, you are to show that u of x k converges to u of 

x. So, without loss of generality, after taking this without loss of generality, take x 1 = x that 

will not change the convergence x 1 = x. So, if you take any sequence x k converge to x you 

to replace that x the first element by x or you add the first element as x that will not change 

the convergence at all.  
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So, corresponding to x k let V be the corresponding harmonic function. So, every sequence 

you have seen a harmonic function satisfies this property, let V be the corresponding 

harmonic function, this is a small trick harmonic function. Then V is continuous that, you 

know because it is a harmonic function V is continuous that implies V of x k converges to V 

of x as k you know as k tends to infinity because it is with respect to k.  

 

Now, V of x k u x k so, this is nothing but u x k so, u x k V of x k V of x so, u of x k 

converges to V of x but V of x what is x = x 1 we have taken, so V of x is nothing but to V of 

x 1. But V of x 1 is nothing but the u of x 1 by the construction of V. But then now, again 

replace x / x 1 / x this is u of x, it is a very small trick plane. So, you implies that implies your 



u is continuous. So, now, we are proof is almost done this is one important thing proving so, 

after the lifting using the lifting we proved u is continuous.  
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Now, the final part now take x k sequence which is dense in B which you can do it you can 

always take because B is a subset of Rn okay. And you know that you can choose dense set 

like are you have the rational which is countable, which is dense set. So, even in Rn, you can 

always choose the density which is countable. So, sequence which is dense in B. For this now 

take the corresponding harmonic V what it was that is V of x k = u of x k for all x k for all k.  

 

Now u is continuous earlier we could not conclude because there is not continuity. Now as V, 

u are continuous conclude that V of x = u of x for all x in B because it is dense you said very 

cute nice proof that bit in a delicate way we are proving that implies u is harmonic in B. Since 

B is arbitrary we get u is harmonic in omega. So, that proves in a sense the solution existence 

of so that proves the theory completes the theorem existence of that.  
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So, that proves existence of harmonic function u in omega such that you have only this one u 

less than or equal to g and d omega, you are not proved that u = g that requires some 

regularity to see to solve boundary value problem we need u = g on d omega which requires 

regularity in general you may not be able to show that you will see in fact you will see some 

necessary and sufficient condition. So; that of the regularity for solubility for all regularity of 

d omega. What we are going to introduce this actually.  

 

So, this turns out to be the existence of a local subharmonic function at the boundary local 

subharmonic function which reduces everything to that minimum thing local, sub harmonic 

function at the boundary points preserving the negative sign that is very important preserving 

the negative sign such a thing is called Barrier function. So, we prove the demand that Barrier 

function.  

 

So, basically you have a domain here and then every point you are looking for some 

neighbourhood on these you will look for a negative, this may not exist all the time. So, that 

is going to be the assumption negative subharmonic function and this should happen for 

every point in some neighbourhood and such things are called Barriers. So, you need some 

negative preserving harmonic negative side preserving subharmonic functions something and 

tightly defined to be as the regularity of this function.  

 

So, we will proceed this definition of Barrier function and then define the regularity of d 

omega and using that regularity we will show that u = g on omega if every point satisfies that 



regularity assumption. So, I will stop here and we will continue as in the next lecture. Thank 

you. 


