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Lecture - 11 

Conservation Law 

 

Hello, everyone welcome back, we will continue the discussion on the conservation law and 

today we will proceed to derive the Lax-Oleinik formula for a possible solution of the 

conservation.  
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Recall that in the previous class we discussed some special solutions of a conservation law 

namely the rarefaction waves and shock waves. And these are solutions to an initial value 

problem called Riemann problem. And Riemann problem consists of the scalar conservation 

law in which the initial function consists of only 2 constant states. And now we will consider 

a general bounded measurable initial function u 0 and try to show that this conservation law 

has a weak solution uniqueness comes later.  

 

So, where we assumed that the f is c to and uniformly convex. In the literature there are many 

different proofs of this important theorem that this uniformly convex conservation law has a 

big solution. And our approach here is to use Lax-Oleinik formula and this Lax-Oleinik 

formula in turn is derived from the Hopf-Lax formula which gives solution to the Hamilton 

Jacobi Equation.  



 

So, Hamilton Jacobi Equation we have already studied in detail and derive this Hopf - Lax 

formula and showed that indeed is a solution of the Hamilton Jacobi Equation. So, again, so, 

this is the Hamilton Jacobi equation w t + f of omega x and again f is uniformly convex and 

this is the initial condition given w x 0 = w 0 x. To see the connection between Hamilton 

Jacobi Equation and conservation law we proceed as follows. 

 

First assume that this w the solution of the Hamilton Jacobi Equation is a C 1 function, 

though that is in general not true we have only proved that w is Lipschitz function and by a 

theorem of that makers. Then it follows that w is differentiable almost everywhere and the 

Hamilton Jacobi Equation is satisfied only in the sense of almost everywhere. So, here almost 

everywhere refers to a certain statement holds true you accept on a set of Lebesgue measure 0 

either on the real line or on the in the plane present case.  
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Let us see the connection so this is just to get an idea what the Lax-Olenink formula looks 

like. So, I assume that the w solution of the Hamilton Jacobi Equation is C 1. So, then we can 

differentiate the Hamilton Jacobi Equation that equation 1 with respect to x and obtain this 

equation for the first derivative of w with respect to x, that is w x t + f of w x x = 0 and w x x 

0 is w 0 x x. So, if you see, if you compare this equation satisfied by w x and the conservation 

law, we immediately see that if you take u = w x. Then we have a solution for the 

conservation law. 
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And to satisfy the initial condition we can take w 0 as integral 0 to x u o y dy and that in turn 

in place, the first derivative of w 0 x is u 0. So, this we have to elaborate a little bit because u 

0 is not a continuous function is only a bounded measurable function. So, in what sense, this 

is true well to see that, we see in due course. So, in order to justify all these statements, we 

have to borrow many facts from the real analysis and that is Lebesgue theory of measure and 

integration.  

 

So, I will explain one by one as we proceed, so this heuristic argument showed that if we can 

somehow differentiate this w, w you remember is given by the Hopf-Lax formula and early 

the Legendre transform of f this is also denoted by f star. So, this given by this definition 

supremum over x belongs to R this product xy - f of x. So, this of course can be defined in Rn 

and that is what we did in the discussion on Hamilton Jacobi Equation. So, there you might 

replay this multiplication by a scalar output.  

 

So, for example, if f of x = half x square and that is the case of Burger's equation, so any 

computation show that Ly is equal to also half y square .So, in this case f and its Legendre 

transform are the same. 
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In general, so, since f is assumed to be smooth so, just supremum is attained at y = f prime x, 

and since we are assuming f is uniformly convex, this f prime has a functional inverse and so, 

x is given by this universe of f prime y and just you plug in so you get a formula for the 

Legendre transform. So, formally, you have this u of x t is derivative with respect to x of this 

w x t. And the only difficulty here is we cannot justify this differentiation directly.  

 

So, we have to study this w x t given by the Hopf-Lax formula and see in what sense this 

derivative can be taken. And for that, we need to study this minimizer function carefully and 

this minimizer function also arises when we simplify this formula in the end. So, this place, 

an important role in the Lax-Oleinik formula. So, we need to study this minimizer of course, 

that depends on the x t so, its minimizer is a function of the x and t. So, we will first study 

how that minimizer depends on x and t, so that is our first topic.  
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So, this lemma for t positive let y = y x t be the minimizer of the right hand side of 2. So that 

is 2 is again let me recall that is so you see that connection throughout, so this is called Hopf-

Lax formula. So, you have to see this in together, so here I have returned w x t = t L x - y x t 

+ w 0 y of x t. So, this w 0 x will be of course, later on we are taking the x t this is the initial 

function. So, this initial function we are going to connect it to the initial function for the 

conservation. 

 

So, then the function x going to y of x t is a non-decreasing function and this allows has to 

use a theorem of Lebesgue I am again state them in detail below. So, this is Lebesgue 

theorem so, it is one of the important theorems in the theory of measure and integration. So, 

any monotonic function is differentiable almost everywhere. So, once that is known, so you 

can justify this, so this is w x t and this is given by this t of L x – y x t. So, L is a smooth 

function and w 0 is also an absolutely continuous function, we will see that. 

 

So, this w can be differentiated almost everywhere with respect to x and that makes sense for 

this u x t and since we are expecting this u to be only a week solution of the conservation law 

and that weak solution definition in once only an integral relation. So, even almost 

everywhere defined function will be eligible for that weak solution thanks to again the 

Lebesgue integration who is allows the integration of functions which are defined only 

almost everywhere. So, proof of this lemma is quite simple and it just uses the convexity of 

this L. 
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 So, for your information I will just recall some definitions of the convex function. So, you 

take any real value function defined on an interval a b, so it is called convex if this inequality 

goes to g of alpha x + 1 - alpha y is less than or equal to alpha g x + 1 - alpha g y for all x y in 

this interval a b and 0 less than alpha less than 1.  
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Suppose this g is differentiable function, so we can simplify the convexity condition little bit 

so, these are easily provable things and those are done in a course on analysis. So, if g is 

differentiable, then g is convex if and only if g prime is non-decreasing so, this g prime is the 

derivative of g and that should be a non-decreasing if and only. So, if g prime is non-

decreasing then g is convex and it is called with g prime is not decreasing.  

 

So, we can still simplify for that so, if you are assuming more smoothness on g. So, if you 

assume that g is C 2 and g is bounded away from 0 by pass to constant so, that is g prime g 

double prime x greater than or equal to c which is positive for all x. Then g is convex and g 

prime is strictly increased. So, since by this assumption, it will immediately followed that g 

prime is strictly increasing with a g double prime is strictly positive.  

 

So, g prime is strictly increasing so, g is convex g prime is strictly increasing so, in particular 

this functional inverse exists, so this is functional inverse. So, g prime inverse composite g 

this is on their respective domains or if I am not writing that domain equality in that sense. 

So, g prime would be from this interval a b on to some other interval and g prime inverse will 

be defined on that range of g prime.  

 



So, this is a simple fact, regarding the convex functions and that we are going to use, this for 

our f, f is strictly convex, so f prime is strictly increasing. So, this functional inverse exists. 

And as per the Legendre transform is concerned, so that generally defines only for convex 

functions. So, Legendre transform of g is also convex. And further, if you take the Legendre 

transform of g star, then we get back g.  

 

So, again back to the proof of this lemma so, what we have to show in order to show that is 

non-decreasing, so, take any 2 real numbers x 1and x 2, x 1 less than x 2 and let y 1 be the 

minimizer at x 1 and y 2 the minimizer y of x 2. So, you just keep this Hopf-Lax formula in 

mind all the time. So, that is the major thing we are going to use and again and again. So, in 

order to prove the lemma, we have to show that this y 1 is less than or equal to  y 2.  
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So, in fact, we are going to show a little more so, what we are going to prove is this 

inequality for the Legendre transform, so this is remember this L is Legendre transform of f 

so that is convex. So, we are going to show that this inequality course so t of L x 2 - y 1 / t + 

w 0 y 1 is less than or equal to t L do not need strict inequality, so less than or equal to this 

side t of L x 2 - y / t + w 0 y and this wholes for all y less than y1.  

 

And once we; prove this inequality star and that implies y 1 less than or equal to y 2 because 

y 2 is the minimizer corresponding to x 2. And just again, look at this Hopf-Lax formula so, 

we prove this inequality star.  
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So, you take any y less than y 1 then we have the simple inequalities so, x 2 - y 1 sits in 

between x 2 - y and x 1 – y 1. So, this x 2 - y 1 is the thing we want here. And x 2 - y you 

would think we want on that right hand side. So, this x 1 – y also sits in between x 1 - y 1 and 

x 2 - y. So, therefore, we can write the x 2 - y 1 as a convex combination of x 1 - y 1 and x 2 - 

y and that what else written here. 

 

And similarly, x 1 - y as a convex combination of x 1 - y 1 and x 2 – y as simple computation 

showed that this alpha is equal to y 1 - y x 2 - x 1 + y 1 - y by the choice of x 1 x 2  y and y 1 

we immediately see that this alpha and beta both line open interval 0 1. That is what I meant 

by convex combination. So, in this constants alpha and beta are related by so alpha = 1 - beta 

or alpha beta = 1. So, now you apply convexity on this statement that is x 2 - y 1 is written as 

convex combination. 
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So, by convexity of L, L of somehow you divide throughout by t everywhere it comes, so L 

of x 2 - y 1 / t less than or equal to alpha L of x 1 - y 1 + 1 - alpha L of x 2 - y / t and 

similarly, the second one. So, these inequalities follow from the convexity of L. And now, 

you add these 2 inequalities again remember alpha + beta is 1. So, we get L of x 2 - y 1 / t + L 

of x 1 - y / t is less than or equal to L of x 1 - y 1 / t because these 2 are same and alpha + beta 

is 1 and L of x 2 - y / t. 

 

And again look at the Hopf-Lax formula so, there is a term containing the initial condition, so 

you just have that. So, both sides are at this w 0 y 1 w 0 y w 0 y 1 w 0 y. So, we are not 

changing the inequality at all. So, even after adding that, we get the same equality.  
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So, now I add this one to this first term so, l of x 2 – y 1 / t + w 0 y 1 is less than or equal to 

1. Now, I take this term on the right and club with the first term. So, this L of x 1 – y 1 / t + w 

0 y 1 minus I take this one other side. So, L of x 1 - y / t + w 0 y and the last term as it is so, 

L of x 2 – y / t + w 0 y. And now, y 1 is the minimizer for that function and y is less than y 1. 

So, the term in the bracket is less than or equal to 0 because y 1 is the minimizer.  

 

So, this is always less than or equal to that for any y. So, this is less than or equal to 0 and so, 

we get L of x 2 – y 1 / t + w 0 y 1 less than or equal l of x 2 - y / t + w 0 y. And this is the 

inequality star and that implies that y 1 is less than or equal to y 2and lemma is proved. So, 

this function x going to y of x t is non-decreasing. Now, before again proceeding further in 

the derivation of Lax-Olenink formula so, here are some facts from analysis we borrow. 
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So, here either g is a real valued function defined on an open interval in that case it can be 

whole real line or it can be defined on a closed interval. So, this is one of the important 

theorem of the Lebesgue. So, I was telling you, so if g is monotonic then g is differentiable 

almost everywhere. So, here monotonic means either it is increasing or decreasing. And this 

inequality inverse integral a to b g prime t dt is less than or equal to. 

 

So, when we have everywhere differentiable function; the fundamental theorem of calculus 

say that this is the inequality, but in this case, so for almost everywhere differentiable 

functions there can be strict inequality. So, this is the first difference we observe between 

everywhere in differential functions and almost everywhere differentiable functions. And this 

is a standard example the cantor function which is constructed using the cantor set.  

 

So, I hope you all know cantor, what is cantor set so using that cantor set so one construct 

this Cantor function defined on this closed interval 0 1 to 0 1, it is non-decreasing. In fact g is 

constant on those intervals removed in the construction of the Cantor set. So, g0 0, g1 = 1. 

So, in particular g is a non-constant continuous function in fact, by continuity g is all the 

values between 0 to 1. 

 

So, g is non-constant, but one can show that this g prime so, since it is not decreasing 

Lebesgue theorem asserts that it is differentiable almost everywhere and g prime is 0 almost 

everywhere. So, again one more features of almost everywhere differentiable functions. So, 

the derivative can be 0 yet the function can be very well non constant. So, that will not 



happen if g is everywhere differentiable that we have in the one elementary calculus we 

observed that. And we also see that in this case this there is a strict inequality.  

 

So, since g prime is 0 almost everywhere is integrally 0, but the g1 – g0 is just one. So, there 

is a strict inequality here. The fundamental theorem of calculus as we know from the 

elementary calculus does not hold for almost everywhere differentiable functions 
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And that is another important distinction. So, for what sort of functions we can expect 

integration by parts. So, we are in fact going to perform many, integration by parts. So, you 

should be careful for which functions this integration by parts holds and that in turn do the 

fundamental theorem of calculus for Lebesgue integral calculus. So, here is one instance 

where this integration by parts holds true.  

 

So, if g and h are from this closed interval to R are absolutely continuous, so this is another 

subtle class of continuous functions so, it is more than continuity so, it is called absolutely 

continuous function. So, I am not going into details of that definition then the integration by 

parts for so, namely a to b gh prime = gbhb and gaha - integral a to b g prime h. So, if you 

take for example h is identically equal to 1.  

 

Then we see that the fundamental theorem of calculus for the Lebesgue integral calculus so 

that was true, so just so this absolute continuity also implies differentiability almost 

everywhere but then there is a equality here. So, obviously that will tell us that this cantor 

function is not absolutely continuous.  



(Refer Slide Time: 29:24) 

 
And that brings us to another class of functions which we also need and little later for 

example you show that the weak solution of the conservation law is a function of bounded 

variation. So, let me again briefly recall what is meant by a BV function. So, again you take a 

closed interval and take any partition means so you divide that interval a b into finite number 

of points. And then you perform this variation.  

 

So, you take the absolute value of g of x i + 1 - g of x i and then some more all the intervals 

sub intervals. So, this is called variation of g corresponding to the partition. So, how this g 

oscillates in between the parts, that is what it meant by x. So, sometimes in fact is called 

bounded oscillation also. So, if for any function certainly this is a finite quantity, but what we 

want is, so we want to take the sum over all the partitions.  
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And take supremum of the sum over all the partitions and that is finite, then we will call this 

g is the BV function and this is called the total variation of g this. So, when you go to higher 

dimension it will not suffice, so one has to obtain a alternate definition of this total variation. 

So, this is the definition of the BV function so, if this total variation is finite then you call it a 

BV function and obviously, if g is either decreasing or increasing so, this we can remove this 

absolute value and this sum will reduce to only at the end points.  

 

So, obviously a monotonically decreasing or increasing function is a function of bounded 

variation is a BV function. And conversely that is again in the study of BV functions you 

might have learned. So, any BV function can be written as difference of 2 monotonic 

functions and by again applying Lebesgue theorem. So, this g 1 and g 2 are monotonic so, 

they are differentiable almost everywhere. So, there difference is also almost everywhere 

differentiable, so this g is differentiable almost everywhere. 

 

So, this BV functions are also differentiable almost everywhere and again we can show that if 

g is absolutely continuous so, then g is a BV function but somewhere is may not be true 

cantor function is an example again and so if g is Lipschitz function certainly it is absolutely 

continuous. So, this class of absolutely continuous functions sit between this Lipschitz 

continuous functions and bounded variation. Bounded variation function need not be 

continuous but continuous bounded variation. 
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And let me again state a theorem of Rademacher so, this whole C 1 R n so, if u is a Lipschitz 

function in Rn then u is differentiable almost everywhere and this is what we have used in the 



study of Hamilton's Jacobi Equation without the solution given by the Hopf-Lax formula is 

only Lipschitz function. So, the Hamilton Jacobi Equation is satisfied only almost 

everywhere and again I have written here.  

 

So, for the conservation law, our weak solution satisfied this integral relation and since this is 

only an integral relation will be satisfied if this u and hence f of u are defined only almost 

everywhere and that is what we are going to do. So, let me just since it is going to take a little 

more time than I expected, so from this point onwards, so we have now got result on the 

minimizer and that I will use to derive the Lax-Oleinik formula and then verify that the 

function given by the Lax-Oleinik formula is a required weak solution of our conservation 

law. So, I will take up this in the next class. Thank you. 


