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Universal property of polynomial algebra and examples  

So, good afternoon, let us continue our lectures on Commutative Algebra and Algebraic 

Geometry. So, last lecture we have seen definition of AK algebra and when it is finitely 

generated etc. And one of the prime example we study in this course is the polynomial 

algebra over arbitrary commutative ring and even in that case we are we will fix base ring to 

either to a field or to ring of integers and then it will give us some analogs in algebraic 

geometry as well as algebraic number theory. 

So, that is one of the reason that I am spending more time on the basics of commutative 

algebra. I still need little bit more but let us see how we can go to geometry and combine 

algebra with geometry. 
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So, in the last lecture what we have done is for any commutative base ring, this is ring, base 

ring we have defined what is an A algebra, also we have defined when do you say it is finite 

type over A, finite type over A. This is same thing as also sometimes people use it finitely 

generated A algebra, finitely generated A algebra, and the typical example of A algebra of a 

finite type over a commutative ring is, so this is typical examples are polynomial ring over A 

in finitely many indeterminate X1 to Xn. 

And also the quotients of this X1 to Xn module on ideal a where a is an ideal in the 

polynomial ring. So, these are the typical examples, so therefore, we have to study these rings 



little bit more for example what happens ideals there or prime ideals or maximal ideals and so 

on. And mostly in the beginning I will take mostly our base ring we will take A equal to a 

field or we will take A equal to Z ring of integers. 

So, first of all we should say, so I want to also clarify what is the difference between finitely 

generated algebra and finitely generated module because what is roughly A algebra is what? 

A algebra by definition I will write ring, commutative ring which is also A module where the 

plus here equal to plus here and the scalar multiplication of this and multiplication of this ring 

they are compatible with each other, so that is an algebra. 

Now, first of all what should be homomorphism between algebras? So, let us define that, so 

definition, so A as usual A is fix base ring, let B and C be two A algebras. A map from f, 

from B to C is called an A algebra homomorphism we need the respect the algebra structure 

if so how many condition. So, first of all 1, f should be ring homomorphism. So, again I want 

to remind here under ring homomorphism we are assuming that identity element 

multiplicative identity goes to multiplicative identity that is very important. 

Second, f is an A module homomorphism and what is an A module homomorphism? It is 

additive, so that is additive that means with respect the addition but the addition is here also. 

So, it is these additivities checked here also and K linear. So, and respect the scalar 

multiplication, so K linear I would say together it is called K linear not K, A linear. That is an 

algebra homomorphism. But you know if I think it is better to write in a different way for. 

(Refer Slide Time: 07:48) 

 



So, algebra I will think now I will not think ring and module and compatibility that is all 

built-in in the saying that B phi is an algebra, where phi is a structure homomorphism that is 

from A to B. And similarly, C, psi these are the two algebra given to A to C. So, when do you 

say map is a A algebra homomorphism f from B to C is an A algebra homomorphism if this 

diagram B C this is given f and A here and there is a structure homomorphism phi, there is a 

structure homomorphism here that is psi. 

If this diagram is commutative that simply means if I go this way same thing as this, so psi is 

equals to f compose phi that means the diagram is commutative, so this is much simpler to 

abbreviate it and it is equivalent to that one that we can check easily. So, that is algebra 

homomorphism, so as usual the collection of A algebras I will denote by A-alg and 

homomorphism of one K algebra from one K algebra to the other K algebra is denoted by 

that set is denoted by Hom A-alg from B to C. 

That is this are the set of all A algebra homomorphism from the A algebra B to A algebra C 

and with this collection it will form a category of A algebras. This again I will come back 

right now just this correction and this and what is obvious thing that we will need is 

composition of two algebra homomorphism is algebra homomorphism, identity map is an 

algebra homomorphism and so on, and we will keep adding more. 

Right now identity and identity B and if you have f from B to C and G from C to D if these 

are the A algebra homomorphisms then G compose f is also an algebra homomorphism that 

you usually check it for every groups, rings and so on. 
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So, now at least I want to describe all A algebra homomorphism such that typical algebra I 

want to consider is A X1 to Xn this is my one A algebra and the other algebra is B let us say 

so this is A algebra. So, if you want you can think B, phi and I want to describe all A algebra 

homomorphism from this polynomial algebra and that is the reason why it is called 

polynomial algebra. 

So, polynomial algebra over A this is also because elements are polynomials. Now, how do 

you construct. So, let me give first one example and then we will see how to write more 

general. So, example, let us take A equal to Z and only one variable n equal to 1. So, my 

algebra is ZX so that is Zx polynomial algebra over Z in one variable and B I am taking it Q 

this is my B and I want to write algebra, some algebra homomorphism. 

So, let us take any rational number x small x, fix any rational number then there exist a 

unique Z algebra homomorphism from Zx to Q I will denote this by epsilon x which maps X 

to x. So, this is obvious because all that we have to check is this is a ring homomorphism and 

this also is a Z linear these are the two thing you have to check but well where will X where 

go, if you want it algebra homomorphism X where I have no choice it has to go to wherever 

X goes, wherever X goes time that. 

So, this has to go x times small x square. Similarly, all powers will go to the powers to that 

small x and it should be Z linear. So, if I want somebody like this a X cube plus b X5 then 

first of all it is additive, so this will individually I can make and A has to go to A and because 

it is Z linear. So, this, this term will have to go to a X cube and this addition plus b x 5. So, 

therefore, this map is uniquely determined, this map is in fact any polynomial capital F, FX 

this will go to F evaluated at X this one is precisely if this is F x this is precisely capital F 

evaluated at X only wherever you find X your write small x. 

So, that is that is why this map is evaluation map, this is evaluation at X. So, you could take 

X equal to half, x equal to 5 by 6 and so on. So, and all algebra homomorphisms has to be 

like this because X has to go somewhere and that you call it small x and then everybody is 

uniquely determined. So, this is called universal property of this polynomial algebra. 
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So, we will abbreviate in a, I will formerly recorded, this is a preposition, this is very, very 

important, it is used very often and mostly it is not said what we are using it but this is what is 

being use always. So, this is called universal property of polynomial algebras very very 

important. So, let A be our, general A be our ring and B is an A algebra and b1 to bn they are 

elements in B they are given elements in b, they are given then their exist a unique A algebra 

homomorphism. 

From the polynomial algebra over A in n variables to B. So, this I will denote the explanation 

epsilon b, where b is tuple b1 to bn. What is the map? Xi should go to bi for every i 1 to n and 

then this is uniquely determined because where arbitrary polynomial will go if demand this? 

Then the arbitrary polynomial have to go to F and substitute for Xi, bi F of b1, etcetera bn. 

So, substitution this is also called a substitution homomorphism, substitution homomorphism 

or also some people call it evaluation homomorphism. Evaluation map because here you are 

leading at b1 to bn and the proof does not need anything because it is an algebra we want an 

algebra homomorphism. So, it should respect addition, it should respect K linearity and also 

it should respect multiplication in the ring. 

So, that determine where a polynomial goes. So, proof I will just say easy verification and 

you should individually you should do yourself homomorphism. So, what does this mean let 

me spell out what is this algebra homomorphism means I want to spell out clearly.  
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So, that means what? That means if I want to write see remember in the above notation 

epsilon b of f is not the small f, I should use capital F, F equal to F of b where b is the tuple b 

going to bn, so you have substituted. So, what is it mean by ring homomorphism? So, first of 

all epsilon b of F plus g capital G this should be on one end it should be F plus G evaluated at 

b but this also should be.  

So, this should be, because it is a ring homomorphism it should be epsilon b evaluated at F, 

image of F under epsilon b plus epsilon b evaluated image of G but this is same as evaluation. 

F, capital F b plus capital G and b. So, this should be equal so that means this evaluating or 

substituting b is additive, another one is similarly, by the same explanation epsilon b of F 

time G equal to F of b times G of b. 

These are on other hand it is I should write that first, so this is F G evaluated at b this should 

be same as F b G b this is very very important both these rules are very very important for 

evaluation of polynomials. So, and what did what does a, what does a above proposition 

describes? It describes the set of all A algebra homomorphism that we have denoted like this 

Hom A alge A X1 to Xn, comma B this set we have explained, we have described completely 

and to describe any homomorphism you need only a tuple of, n tuple of elements from B. 

So, that means what? That means that is B power n, other set is B power n, this is B cross B 

cross B n times n times and what did we do? We gave a map from where to where? We gave 

a map from here to here, namely tuple b which is b 1 to bn which goes to epsilon b 

substitution homomorphism by B. So, we gave this map and uniqueness give this map is 

injective and (())(23:10) is also obvious because given any algebra homomorphism that is 



uniquely determined by the values of X1, X2, Xn so that I call it b1 b2 bn so this map is 

actually isomorphism. 

This is an isomorphism bijective, there is no structural, I am only saying the map is bijective, 

so when time come we can identify these two sets. And there is nothing special about this 

finite n. So, let me write for arbitrary number of intuitive minutes so that is Hom A algebras 

from the polynomial ring now in many many variables index by i X i i in i this to sum algebra 

B A algebra B and where can I take it now here B power I and what is B power I? Think of B 

power I as maps from I to B these are maps from I to B. 

So, each map will give you a tuple and each tuple will give you a map. So, either you can 

think of bi i in I or think it is a map from which map from I to B, i going to bi given any map 

from I to B you can get a tuple and given in tuple you can get a map. And better to think 

these maps. So, these are, these two sets are bijective. So, that is it, now I want to also. Next, 

observation I want to make. 
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So, I want to use this observation to give you some examples maximal ideals for example in a 

polynomial ring. That is two lectures back we were discussing maximal ideals and we wanted 

to give more examples. So, how do we give more examples is this I will use this observation. 

So, this is example. So, now I will take my base ring to be a field K is a field and I want to 

give maximal ideals. 

So, we would like to give explicit examples of maximal ideals where ideals in the polynomial 

ring. So, I fix I am going to, as you have notice this K power n, n tuples these are let me write 



them a equal to a1 to an and we have given a map from Hom A algebras, K algebra from the 

polynomial ring to where, in K. So, remember back of your mind that K equal to b in the 

above notation. And what is the bijection? Any element A, where does it go? Ist goes to 

epsilon a, epsilon a is a algebra homomorphism from K X1 to Xn to K. 

Where X i are map to ai that was a map. So, given this A we have this epsilon a, epsilon a is a 

algebra homomorphism this is K algebra homomorphism and it is obviously surjective. Is it 

surjective, is it clear? Because 1 has to go to 1, 1 0 1 has to go to 1 and it is K linear because 

it is K algebras. So, this is this epsilon a is surjective map for every a in K power n, we know 

it is surjective. 

So, what is a kernel let us compute the kernel. So, kernel of this I want to check what are the 

generators for the kernel this ideal, this is an ideal in the polynomial ring. So, this one I will 

list some elements which are obviously in the kernel. So, for example X1 minus A1 this 

polynomial this is free from all other variables, this is obviously in the kernel, because what 

we have to do to check in the kernel I have to check that when I substitute Xi is equal to Ai it 

becomes 0. 

So, I have to substitute X 1 to a1, so it is 0 and remaining variables we do not have to, they 

do not appear, so nothing happens. Similarly, X2 minus A2 and so on. So, Xn minus an, all 

these linear polynomials they are in these kernel and therefore, the ideal generated by this 

polynomials it is the smallest ideal which contain this polynomial but these are also here 

therefore this inclusion is obvious. 

So, kernel contains this ideal generated by this and this kernel because it is a algebra of 

homomorphism 1 has to go to 1. So, 1 cannot be in the kernel therefore, this cannot be unit 

ideal therefore this is a proper ideal of the polynomial algebra. And I want to prove now it is 

equal here I want to prove this is equal. This is equal I want to prove, so let us prove that so 

what do I have to proof? Every polynomial in the kernel is written as a combination of X1 

minus a1, X2 minus a2 Xn minus an. 

And coefficient should be in the polynomial ring, because we want it to be an ideal. So, take 

any polynomial in the kernel F. So, let F belong to the kernel, so that is F of when I substitute 

in F instead of variables these small ai a1, an equal to 0, because it is in the kernel. On the 

other hand this F is a function F is a continues function, it is a polynomial function therefore 

continues function.  



I am offering one proof the pure algebra people mind find it little bit more difficult but it is 

obvious. So, think of it is a polynomial function and therefore it is a differentiable function 

and therefore, if you remember Taylor’s theorem, what does it say? Taylor’s expansion at, 

yes? So, this will be equal to what? So I want to expand, so what do I have to do, I want to 

expand not equal to this. So, this I want to expand, I want to write such a formula for 

arbitrary polynomial. So, let me give you the next page. 
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Given any polynomial F of X1 to Xn and a is any given point in K power n this equal to F 

evaluated a1 to an plus some coefficient X minus a1 some coefficient X minus a2 and so on 

plus some coefficient x minus an you can (())(33:29) what are the coefficient plus somebody 

now these are taken I have taken 1 at a time. Now, it will X minus a1 square, square terms 

and also the mixed terms plus somebody times X1 all this is X1. 

This is X2, this is Xn, X2 minus a2 square and so on plus somebody X1 minus a1 X2 minus 

a2 two at a time and goes on like that. Now, this is a Taylor’s expansion at a1 to an. So, now 

what are the coefficients here? This will be partial derivative of F with respective X1 

evaluated at a1 this will be partial derivative. So, let me write this is F suffix X1 evaluated at 

a1 to an. Similarly, this similarly this and this and now in this if you (())(34:43) this term is 

given to be 0 for us. 

So, where do F belongs to? Now, you can take out this, this is an X1 X2 Xn and this is this 

you can observe, this you can observe here because X1 minus a1 you can take out and 

remaining part you can observe in the coefficient similar this similarly so on. So, therefore, it 

is the equality is clear but his proof in all this formula but let me tell you also directly, so we 



want to check what? We want to check that, we want to check that if F of a1 to an is 0 then 

we have a expression like this F equal to some G1 times X1 minus a1 plus, plus, plus Gn Xn 

minus an. 

This is what we want to prove, we can prove also directly this. So, or either this or directly 

prove this is equivalent to proving what? So, directly or directly proof that this ideal 

generated by X1 minus a1 Xn minus an is a maximal ideal in K X1 to Xn. Because if you 

prove this is a maximal ideal, this is a bigger ideal than that, and this is a proper ideal. So, 

they have no chance but this. So, that would prove the claim and how does one proof that this 

is a maximal ideal, how does one prove this is a maximal ideal? 

You go (())(37:14) and check it is a field but you see we have this diagram K X1 to Xn to that 

K this is the substitution homomorphism epsilon a and then we want go (())(37:34) this 

maximal this ideal this is the residue map and this is the map induced by this in when we 

studied the residue class ring that is I denoted by bar this diagram is commutative but this 

map I have already noted this map is surjective therefore and we have (())(38:18) the kernel. 

So, one of the theorem I proved one of the observation, one of the corollary I proved earlier 

that this has to be bijective, this has to be an isomorphism. So, therefore, not only get this 

quotient this residue class ring is a field. But this is isomorph is to K it is a specific field 

isomorph to K therefore this is maximal and therefore it proofs that. So, we get lots of 

examples of maximal ideals. So, what do we get let me summaries we get that all the points 

here they give you maximal ideals. So, let me note that we will use it for future. 
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So, what we have proved we proved that Spm of K X1 to Xn this set of all maximal these are 

all maximal ideals and this K power n and K power n we have identified with ma this is 

generated by X1 minus a1 Xn minus an we just now check that this is maximal ideal and as a 

varies in K power n. So, let me clean up little bit maximal ideal ma this is X1 minus as a1, Xn 

minus an, this as a varies in K power n this set we have identified with this K power n and 

this is a subset here. 

That is what we proved each one of them is maximal. So, we have ample number of maximal 

ideal but this may not be equal here I would like to be equal here but it may not be equal in 

general we will give example, so that this is not equal in general. So, I will continue this in a 

latter half, I will produce maximal ideal which is not of this type for some fields. So, after the 

break we shall meet to continue. Thank you.  


