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Zariski Topology on Arbitrary Commutative Rings  

Welcome to this course on Algebraic Geometry and Commutative and Algebra. Recall that 

up to now, we were only discussing classical algebraic geometry, that means we had a field 

and we had a finite type algebra or a field and in the algebraically closed extension field of 

the base field. And then we have defined the Zariski topology in the setup and so on. And we 

proved classical Albert's rule and that's many of its equivalent formulations and so on.  

But now, today, I will start with more abstract algebraic geometry where we can which will 

heavily depend on commutative algebra.  
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So, let me start now always A is our commutative ring and always with identity element, 

multiplicative identity, this is in commutative I will not keep saying always and with this, we 

have already introduced this object called spectrum Spec A. This is a set of prime ideal p, p is 

the primary ideal and we had a subset of this, namely the maximal spectrum Spm A. All 

those maximal ideals in m, m is a maximal ideal. And we know that this maximal ideal, the 

set of maximal ideal is a non-empty set if A is non zero and this is obviously a subset here. 

And now I am going to define a topology on the spectrum. This is called a prime spectrum of 

the ring of A. And this one is known as maximal spectrum. After maybe in the next couple of 

lectures, I will be also able to explain you why is it called a spectrum and what is this to do 



with the spectrum which is coming from physic. Alright, so now our aim is to put a topology 

on this the set of all prime ideals. Actually it is very easy, we have done a lot of work. So, it 

will be large extent to a large exchange it will be imitation from the classical case. And 

because I am going to put it topology for psychological reasons, I will denote this as X and 

this X naught.  

So, on the set X, I want to put a topology. So, this notation, I will use the following notation 

which is very useful and this also will give you a feeling that how the classical case, how it is 

matching with the classical case. So, this notation is due to Grothendieck. So, whenever I 

want to consider it as a point in a topological space X, I will write small x in X, but small x 

should be actually a prime ideal.  

So, whenever I want to switch back from topology to algebra, commutative algebra I will 

denote the same x by a p suffix x. So this will indicate the algebra this will indicate the 

topology. Now, this is prime ideal. So this is a prime ideal corresponding to x and this x I will 

keep calling it to the point that is usual what would we call the point in a topological space. 

Alright now, I need a more space so I go to the next page. 
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Alright, so we have these px. So, px is a prime ideal means this is prime ideal that is 

equivalent to saying these A by px is an integral domain. Therefore, we can talk about its 

quotient phase and this is contained in the quotient field. So, in the algebra I have used this 

notation quotient field of an integral domain A by px. But these are I want to abbreviate 

instead of writing so much I will abbreviate these by kappa of x. This is the quotient field of 



A mod px, that means, it is S inverse of A mod px, where S is the set of all nonzero elements 

in A by px that was the localization. Also these can be thought, we have done this 

equivalence this is precisely also isomorphic too because localization and the quotient these 

operation commute. 

This is also same as A localization px modulo px A localize at px, this is a local ring, this is a 

maximal ideally in that. So, this is actually the residue field, this is also the residue field of 

the local ring A localizer px and this is by definition it is you take the compliment of px in A, 

A minus px and take inverse.  

So, these two things are same that we have checked when we did the localization. So, 

therefore, all together for every x in X, we have a map from the ring A, then you pass on to 

the quotient A mod px and then you take the quotient field or the residue field, which ever 

you like and that is our kappa x, and what is the map? Take any F I will denote it by F only I 

will denote elements of the commutative ring that we started with the elements by F, G etc.  

Because if we get stuck you think A as a polynomial algebra and then take that A as the 

polynomial. But here f is an arbitrary element in the ring A. So, this is A arbitrary element, 

and then what do you do? Take its image residue class mod px that we usually denote by f 

bar. So, this is a residue class of f modulo px. And now we have a natural inclusion map, so 

the natural the image the natural inclusion, the image of this f bar this is a field and that I am 

going to denote f of x, f of x in the image of f bar in this field. This so image of f in this field 

is f of x.  

Now, this is not f you validate at x that it just a notation. This is very-very important. Now let 

us understand this notation, what good it does to us.  
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So, note that for f in A, f of x is 0 in kx. What does that mean? In kappa x actually, what does 

it mean? That precisely means, so this is this if and only if that means this means f bar is 0 in 

A by px, because this is just image of that under the inclusion map. So, if this is 0 that if this 

is 0, but that is if and only f belongs to px. That is how it f belong to px, then f of x is 0.  

That is the meaning of this notation. And you will see this is very useful. Now, we will define 

the algebraic sets. Now, definition as usual, the notation is as earlier, A is a commutative ring 

and we are denoting spec k to the set of all prime ideals and now, I want to define, what are 

the closed sets? 

And they should be really satisfying the properties of the closed sets in a topological space 

and that will give us a topology on the spectrum and that topology will be called as a Zariski 

topology, but we already have hint what to do? So, for an ideal A in the ring A define V of A. 

Now note we have not kept any suffix, so in the earlier discussion there was always a suffix 

because we were looking at the zeroes there and that was, you know a fine space or extension 

of the field k but now, you know field and nothing.  

So, right now you only have a ring and an ideal A. So, this is by definition all those, first I 

will write as algebra and then we will convert into geometric language, all those p in Spec A 

such that A is contained in p all those prime ideals which contain that A. Now, let us convert 

these into a geometry language. So, these p should be px, it should be px. So, this is same 

thing as all those x in X, such that now, what are these mean? This means for every f in A, it 

belongs to p. So, I will write here f belongs to px for every f in a. Then what does this 



conditions just now, we understood that, that f belong to px, this is equivalent to using f of x 

is 0. So, this one will become all those x in X such that f of x is zero for every f in a. So, that 

means these are the, this is the set of points in this x this set x, where that x is 0 of these 

element f in and that happens for every A.  

So, this is same thing as intersection intersection is running or f in A, V not V this is the 

intersection of all x in X such that f of x is 0 and this was precisely, this precisely will denote 

V of f. So now, so this notation matches with that, so how do you check some x belong to 

VA? You check that it belongs to V have f for every f in A.  

Now even addition, your ring is good, if your ring is Noetherian, so now, if A is a Noetherian 

ring then we know then by HBT every ideal a ideal a in the ring A is generated by finitely 

many elements. So, f 1 to fm and then this step, you only have to check only finitely many 

conditions. So, this will become in that case this, so and V of a will be equal to then V of f 1 

to fm equal to intersection Vfi, this is running for i equal to 1 to m.  

And now we can, so these f 1 to fm are called defining equations of this set VA, f 1 to fm 

which are elements in A in the ring A are called defining equations of V and they are finitely 

mean. That this is Noetherian is very important and mostly we will not deal with ring which 

are not Noetherian, because those kind of questions will come under pathological question.  
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So, we will not worry about that. All right now therefore, so now we can write the 

proposition, so let A be a commutative ring. I am writing these for the sake of completeness, 

X equal to Spec A. Then the collection Va as a varies in the ideals satisfies properties of 



closed subsets in a topological space and therefore, so therefore, so in particular X and let us 

call this Fx F suffix x, Fx is a topological space with Fx as closed subsets. This is called the 

Zariski topology on the spectrum on X which is Spec of A. Alright, now what do we have to 

check? We want to check that this satisfies the properties of the closed sets.  

So proof, once you check that then the remaining just in particular part, so you do not have to 

bother. So, we need to check empty set is there, empty set is d in Fx. That is clear because 

empty set is precisely V of 1, 1 is 1 A. So, this 1 is 1 A always commutative with 1 A and 

that I will call it 1.  

There is no prime ideal which 1 where 1 belongs. So, therefore, by definition this is an empty 

set. Whatever the full Space X, X is Spec A but this is V of 0, 0 element belong to every 

prime ideal. Therefore, this is clear, this is also clear. So, the two properties of the closed sets 

are clear. Now, what is this, what is the next property? Next property is union finite arbitrary 

intersection and finite union.  

So now, we have to check, suppose I have the family of ideals ai, i in i, this is family of 

arbitrary family of ideals in A, then what we want you want to check? We want to check that 

the intersection of these closed set this these sets which are in Fx. So, this intersection is 

running over i, I want to check this is equal to V of somebody, but V of whom? Now we can 

get this is precisely V of the sum ideal. Let us check this equality, I want to check these 

equality using our notation and give you a feeling that this is like a checking like a classical 

case. Alright, so first of all, one of the inclusion is clear, which inclusion is clear?  

See, ai is always contained in, see we have this ideal ai and the sum ideal ai and what is the 

definition of the sum ideal? It is a smallest ideal which contains all the ideals. So therefore, 

this each ai is contained here for every i in i these ideals contained here. Now, when I apply 

V that is obviously inclusion reversing that is very clear. So, this inclusion these they are 

contained in each one of them. Therefore, this side is contained in the intersection. This is 

obvious, this is I would say this is clear from here. Now, we want to prove that, if you take 

any element here that is clear. So, if I take any element here then it is also here. 

So, what do we do? Take any, what are the elements? They are points in it, all these 

equations are happening where, they are in this X, X is Spec A. So, I will write X, so X 

belong to LHS if and only if x belong to V of ai every i. What does that mean? This is if and 

only if that means for any element in the ideal ai when I evaluate that element on X it is 0. 



So, that is f of x is 0 for every f in ai and for every i in I, this is clear? But now, this is 

equivalent to saying f of x equal to 0 for every f in the union of ai because this is for very and 

for every. So, that means in the union it is clear, but that is if and only if this f not f, x, x. So 

that is this is for every f.  

So that means this is equivalent to saying f of x is 0 for every f in the sum ideal, why that? 

Because some ideal contains all of them, and it is precisely generated by the union and 

therefore, this equivalence. So, and this means it is on the right side, this is if and only if x 

belong to RHS, so that prove this equality. Well, now, you when you see a books usually they 

will say take AB A prime ideal which contained ai and so on and so on. But this is these, 

these writing is improved by our notation, which will due to Grothendieck.  
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Now, let me finish also this last property of the. So lastly finally, we have to prove that it is 

closed under finite union. So, now I will do not write too many ideals. So, suppose I have 

given two ideals a and b, two ideals in the ring A. Then and I have given V of a union V of b, 

then I should be able to write these as V of some ideal, but which ideal? The product ideal a 

times b or this will also be equal to V of a intersection. Once you prove this equality, this I 

will leave it for you to check. So, this you check and I will prove you this equality and that 

will prove that its V is close under a finite union. 

So, again what do we do? So, one of them is obvious here, which is obvious ideal a, b. So, 

now since a times b these ideal is contained a, when I apply V of that, that will be contained 

in V of this. Similarly, these ideal is also contained in b. So, that we will check that the 



smaller the ideal bigger the V. So therefore, this will contain Va and this will also contain Vb 

for the same reason, so, this inclusion is clear. Now, conversely, I will check that any point 

here will also belong to the union. So, conversely let x in X be such that x belong to RHS, 

what does that mean?  

That means, so that is x belong to Va times b and I want to prove that this x either belong to a 

or belong to b, what does that mean? These ideal a, b generated by the products. So, that 

means, so this is equivalent to saying f times g of x is 0 for every f in a and for every g in b. 

But what is this? This means, what it is by definition? Because that composition remember 

this A to A by px to kappa of x and this is we are taking f going to f of x that is our notation. 

This is an actual inclusion. This is the integral domain, this is a field, so, it is a ring 

homomorphism, this is a residue class, this is also ring morphism.  

So, composition is a ring homomorphism. Therefore, this one is ax times gx. So, this is 0 and 

where are you taking 0 in this field. So, we have two elements in the field where product is 0. 

Therefore, that is equivalent to saying one of them is 0. So, this is equivalent to saying either 

fx is 0 for all f in a or gx is 0 for all g in b. But this is equivalent to saying x belong to Va or x 

belong to Vb. So, here this implication is little bit careful because you may think that these 

are fixed but this is you will have to argue like that if for some g in b, if this is not 0 then all 

these guys will be 0.  

So, in any case the statement is correct. So, this is I will put here extra check. So, with this, 

we are proved that these are the closed subsets in a topological space and that topology is a 

Zariski topology on the spectrum. So, when I am consider a ring and spectrum, that means it 

is a topological space with this the Zariski topology. So, one does not say all the time that this 

is a Zariski topology. It is understood when one say the prime spectrum of the commutative 

ring, then you consider Zariski topology only. So now, further more properties I will do it 

after the break.  

And so, you would realize the proofs will become easier, but more and more commutative 

algebra will enter. So, in some sense generalization is easier. On the other side generalization 

has become little abstract. So, one has to (())(32:23), so since we are getting better results, we 

go to the abstraction. Thank you. We will meet after the break. 

 

 


