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Properties of Irreducible topological spaces 

Come back to this second half of today's lecture. So, remember in the just few minutes before 

I have defined what is the Noetherian topological space that is one where the open subset 

satisfy ACC or equivalent to closed subsets, satisfy DCC. Now another concept which I while 

dealing with Nullstellensatz and some few consequences what we have what the concept of 

irreducible subsets. So, let us recall that in general. 
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So, definition let X tau X, be a topological space. We say that X is irreducible that means we 

cannot break X into two open subsets which are disjoint. So, if I will write equivalent 

conditions and leave the proof of equivalence which is not so difficult for checking the details 

to the participants. So, if it satisfies the following equivalent conditions, what are the 

equivalent conditions one, first of all X should be non-empty. We never say X is empty set is 

irreducible. It is like assuming a ring is non- zero.  

So, X is non-empty and if I have any two open sets, U and V are two open sets then their 

intersection should be non-empty both are non-empty. If both U and V are open, non-empty 

open, non-empty open subsets in X. So, in short instead of writing such a sentence I could 

have written U, V belong to tau X and both are non-empty.  



Then the intersection is also non-empty. Second condition X is non-empty always and every 

non-empty U open is dense in X, what is dense? So, that is U bar equal to X. What is U bar? 

U bar is the closure of U in X, this is the closure of U in X and what is that? That is by 

definition it is a smallest subset, this is the smallest subset, closed subset, smallest closed 

subset which contains U. 

So, in other words, this is nothing but intersection of all F, F should contain U and F should 

be in FX, FX is precisely the complements of the tau X. This is a closure, I usually denote it 

by a bar above. So, the condition to is every X is non-empty, this is  the same condition and 

every open set U should be dense in X that means U bar should be X.  

That means X is the only closed set, which should contain U, the smallest. So, this is true. So, 

now these are equivalent then we say that the subset is, the topological space is irreducible 

and when do I say subset is irreducible? That means in a induced topology should be 

irreducible. 
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So, we say that a subset Y in a topological space X tau X is irreducible if Y with the induced 

topology tau Y, tau Y is this is the induced topology on Y from tau X, what is that? This is 

precisely, so let me complete a sentence, if this topological space Y is irreducible topological 

space. So, what is this tau Y by definition? You take all open subsets in X and intersect all of 

them to Y and that will be a topology on Y and with respect to that topology Y is called the 

induced topological space from that X.  



So, this is precisely the collection of all U intersection Y as U varies in tau X. So, this is a 

topology on Y and this is called the induced topology on Y from X or from tau X. Such a, 

then it is irreducible. Now, some examples one should say. So, some examples you, some 

examples one if I take X to be a singleton this is clearly irreducible.  

So, what do we have to check? We have to make a tau x, what can tau X be? So, empty set 

should be there by the property of topological, topology whole space should be there and 

there is nobody else. So, only two and only there are only two open sets and what does it say 

that every open set every two non-empty open set should intersect, if you want to check 1 of 

them. But that is clear and the singleton X, so everything is clear for this. This is 1, 2, so what 

is the example of this kind?  

Example of this kind is singleton that is precisely suppose you take K is a field and look at 

the spec K, the set of all prime ideals in the field K. There is only one ideal namely 0 ideal 

and 0 ideal is a prime ideal. Because mod that is the field, therefore it is even maximal. So, 

this is only Singleton 0, 0 ideal. So, it is a singleton.  

So, therefore by this is a singleton 0, singleton space. So, which we know is irreducible 

topological space. So, we can give, then somebody says the field is too trivial. So, let us give 

little bit more general example which is like this. More generally I would say, take look at 

these example, Q is a field and take polynomial ring in many variables Xi, i in N countably 

many variables. This is not a finite FQ algebra, this is big. This is not your Noetherian ring 

that we have seen and I want to go modulo this, ideal generated Xi square i in i.  

So, this is my ring, this is our ring A1 and let us write down what is spectrum of A? Spectrum 

of A means, all prime ideals I want to write down here. So, I claim that there is only one 

primary ideal and what is that? So, because every primary ideal in A will contain these ideal, 

because of the ideal correspondence that it has to contain it say ideal in the polynomial ring 

which contain this and that will also be prime.  

That is a correspondence theorem which we did long back between the ideals, prime ideals, 

maximal ideals and so on. So, every prime deal should contain these ideal and it is a prime 

ideal in the polynomial ring. It contains the Xi square for every i. Because it is prime, it will 

contain Xi. Therefore, it contains all the variables and it cannot contain any more element 

because this is a field and so on. So, this means this has only one primary deal p, namely 



ideal generated by Xis or if you like images of Xis. This is the only prime ideal. So, it is a 

singleton space.  

So, therefore, it is irreducible and this ring, this a is not a field, not a field. So, also these 

singleton spaces are all Noetherian, because Noetherian means it should satisfy maximal 

condition or ACC on the open sets. But they are only two open sets. So, finite in fact more 

than that finite topological spaces always Noetherian.  

(Refer Slide Time: 13:04) 

 

So, these are few examples. I will write down few more after the following proposition which 

will also tell something more about irreducible subsets, proposition. So, always X is a 

topological space and I will drop that tau X also in the notation it is understood, when I say X 

be a topological space that means it is understood that I have given the tau X or I have given 

FX and Y be a subset.  

Then Y is irreducible in X if and only if Y bar is irreducible in X. Where Y bar is the closure 

of X, closure of Y in x. So, let us prove this. So, I am proving this way first. I am assuming Y 

is irreducible and Y irreducible means every two non-empty open subsets in Y, they should 

intersect to non-empty, their intersection should be non-empty and Y should be non-empty. 

So, I should have started with Y is irreducible means Y is non-empty first.  

Now, in it we want to check that this is irreducible. So, we want to check what, Y bar is 

irreducible so we should check Y bar is non-empty. But Y is contained in Y bar. So, if this is 

non-empty, this is also non-empty. So, that will imply Y bar is non-empty and I have to check 



in a what? I have to check that two non-empty I have to start with two non-empty open sets in 

Y bar.  

So, let U and open sets in Y bar looks like U intersection Y bar and V intersection Y bar. So, 

these are both are non-empty be two non-empty open subsets in Y bar and where are U and 

V? U, V are in tau X that is understood, because any open subsets in Y bar looks like this and 

what we want to prove. So, to prove that U intersection Y bar intersection V intersection Y 

bar this should also be non-empty.  

This is what we want to do, but this is what? This is U intersection V intersection Y bar. This 

also we want to prove that is non-empty. But now, look at, so consider given U and V in tau 

X, we can consider U intersection Y and V intersection Y and because this is an open set in Y 

bar it has to intersect with Y.  

Because that is a definition of Y bar, Y bar is a closure of Y means, every open set which 

intersects with Y bar also intersects with Y. So, because these are non-empty, this is also non-

empty, this is also non-empty because of this and definition of the closure. So, these are non-

empty.  

Therefore, I know and this is means what? To prove this is non-empty is equivalent to 

proving U intersection V intersection Y is non-empty, non-empty. But that will mean that, so 

because Y is irreducible we are assuming this implies this and therefore, that. So, therefore, it 

proves that this is proof these non-emptiness it is proved.  

So, we approved one way. Now, we want to prove this way. So, suppose Y is irreducible, Y 

bar is irreducible and U and V, U, V we open sets in X which are intersecting with Y. Then 

what we want to prove? We want to prove that U intersection V intersection Y is also non-

empty.  

This is what we want to prove that we prove Y is irreducible. But if both these are non-empty 

first of all that will mean is Y is non-empty. So, these conditions will tell us Y is non-empty 

and then if both these are non-empty, the because Y bar is a closure of Y, the bars will also be 

non-empty and therefore, again then this will be non-empty and but this is non-empty is equal 

to say this non-empty. So, the proof is here only I would say write details. So, that proves the 

proposition and that will give us more examples now. 
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So, corollary you can say to the proposition, corollary let X be any topological space and 

small x be a point in X. Then the closure of singleton is irreducible subset of X. This is clear 

because we proved that the singleton X is always irreducible and therefore, closure is 

irreducible. So, now one more definition I will need.  

So, definition this is very important definition as far as the algebraic geometry is concerned. 

So, let X be a topological space. Suppose that X is irreducible, I do not have to suppose, it 

will be a consequence anyway I will put these in a bracket. A point x in X is called a generic 

point of X. If I take the closure of the singleton set that is the whole squares X then it is called 

a generic point of X.  

First of all, note that if a generic point exists, then it the topological space has to be 

irreducible. Because we have just earlier Corollary, we proved that closure of a singleton is 

always irreducible. So, you want to if you want to test some topological space have a generic 

point you should test for it is irreducible or not and then think whether there is a small x.  

So, that the closure of that singleton is a whole space X and I will prove that in a Zariski 

topology all close subsets closed subsets are, closed subsets defined by a prime ideal they are 

all, they all have the generic points. This is what I want to prove it ultimately in a general 

setting.  

So, this is one definition. Another definition I need that what is a irreducible component. So, 

a maximal irreducible subset of X is called an irreducible component of X. So, this is, so 



what do the earlier statement says earlier statement says that irreducible components are 

close. So, by, because we approved the proposition by proposition irreducible components 

have X are close.  

Because if Y is an irreducible component means what? That means Y is irreducible subset 

and Y is maximal that means maximal with respect to always inclusion. That means there is 

no bigger subset then Y which is irreducible in X. But Y bar is also there and if it is not equal 

here that means, Y bar is irreducible, Y is irreducible then Y bar is irreducible and the proper 

inclusion here will mean this Y is not maximal.  

So, if Y is maximal irreducible subset of X, then it will be equality here. So, it is close. So, 

with this now, we I should we should prove that two things. So, let me state them, we will 

prove one by one and then ultimately I want to prove that if spaces if your topological space 

is Noetherian then there are only finitely many irreducible components. So, let me go 

quickly. Some of the proofs I may skip it due to the time.  

(Refer Slide Time: 26:27)  

 

So, preposition position, every irreducible subset in a topological space is contained in an 

irreducible component of X. The proof is easy that, so I will leave the proof of this that is so. 

I will just say that proof apply Zorn’s lemma, what do you apply Zorn’s lemma to? You 

apply Zorn’s lemma to the collection. So, you have given Y is you have given Y irreducible 

in X.  



So, you consider all irreducible subsets of X which contain the given irreducible subset Y and 

then on this collection you want to find a maximal element with respect to the inclusion and 

first of all, so I will just quickly recall Y irreducible in X suppose this is given and consider 

the family Z.  

So, Z is a subset of Y is contained in Z, contained in X and Z is irreducible consider this 

family and we are looking for a maximal element in this, this family, this family let us call it 

or do I call it F, F to show that is as a maximal element first of all note that this is non-empty. 

Because Y bar is also irreducible. Y is also there, Y bar is also there. Both are there.  

So, anyway it is non-empty family and apply the Zorn’s lemma that show that every chain in 

F has an upper bound and therefore, you conclude that this f has maximal element. But the 

maximal elements are precisely the irreducible components of x, which will contain the given 

irreducible subset Y.  

So, corollary not corollary, the next one, next preposition and now let X be an Noetherian 

topological space. Then every closed subset in X is a finite union of irreducible closed 

subsets in X. Let us prove it immediately, proof. So, take any closed set. So, let us take a 

family F, what do I want to prove?  

I want to prove that every closed subset in X is a finite union of irreducible closed subsets in 

X. So, look at the family F this is by definition, look at those closed sets which cannot be 

written as a finite union of irreducible ones. So, look at all those closed sets F, F is a closed 

set in X, F suffix X, remember the difference. This is all closed subsets in X and this is the 

family I am defining, all, these are the closed sets F cannot be returned as a finite union of 

irreducible closed subsets in X.  

This is my family F and what is that we want to prove? We want to prove that this F is empty, 

to prove F is empty. So, suppose F is non-empty, if this family F is non-empty then this is a 

family of closed sets and X is Noetherian. So, by definition of Noetherian, this family will 

have a minimal element, no closed set satisfy DCC means, it has a minimal element. So, then 

there exists a minimal element. So, then there exists a minimal element let us call it F naught 

in this family f. So, you choose a minimal element. Let, we have called it F naught. 
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Since F naught belongs to F by definition of F this F naught cannot be a union finite union of 

irreducible closed subsets in Y, subsets in X. Because the definition of F is family F those 

which cannot be written as a finite union of irreducible closed sets. So, F cannot be 

irreducible in particular, in particular F naught is not irreducible in X this is also cannot that 

means what? 

So, that is you can write F naught as a union of two proper close subsets, that is F naught, you 

can write it as F1 union F2 with F1 contained in properly F naught, F2 contain in properly F 

naught, two proper subsets. But by minimality of F naught in F, we get then we have this F1 

cannot be in F with family F and this F2 also cannot be there. Because if it is there then F 

naught will not be minimal there.  

But what is F1 naught means what? F1 is a finite union of irreducible closed sets. So, this 

means, F1 we can write it as F1, not F1 I should use different letter G1 union, union, union, 

Gr where Gis are irreducible subsets in X and similarly F2 which is H1 union, union, union 

Hs, where Hj are irreducible subsets in X.  

But then union F naught which will be equal to F1 union F2. Which will be G1 union, union, 

union Gr union H1 union, union, union Hs is a finite union of irreducible closed I should 

have written here closed, closed, closed subsets in X. This contradicts a contradiction to F 

naught belong to the F. So, therefore, F is empty and therefore. So, we have proved that I will 

write one consequence and stop. This is very important consequences and it is important. 
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So, that consequence I want to write it as a theorem, so theorem this will follow immediately 

from the earlier preposition. So, let X be a Noetherian topological space, be a Noetherian 

topological space and V be a closed subset of X. Then V equal to V 1 union, union, union Vr 

where V1 to Vr are irreducible components of V and Vi is not contained in the union of the 

rest of them Vj, j from 1 to r and j, i not equal to j. So, this you can immediately deduce from 

the earlier preposition and these I will use it in the next lecture. So, I would stop here. Thank 

you very much. 

 


