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Consequences of HNSContd 

Welcome back to this second half of the lecture. In the earlier part, in the last we have stated, a 

Corollary and we want to give a proof of that corollary first.  
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So, proof of corollary 4. So, that is you have defined a map from K Algebraic points in L power 

n. So, the map we defined was from K Algebraic points, points in L power n, to the set of 

maximal ideals in R, R is the polynomial ring in n variable over K, remember that and this map 

is a going to IK of a and the assertion is, if L is algebraically closed, then this map is, I called it 

phi, then phi is surjective, this is very important.  

So, first let us prove this and then there is a part, when two points go to the same ideal, what 

happens to them. They are precisely the K conjugates. So, first let us proof this, I want to proof 

this surjective. So, start with any maximal ideal and I am looking for an algebraic point in L 

power n. So, that, that point go to the given maximal ideal.  

So, let m is in the maximum spectrum of R, we want to prove, want to prove that, this m must be 

of the form IK of a, for some a in L power n, which is K algebraic, algebraic point, this is what. 



So, we are looking for a. So, we are given a maximum ideal. So, it is a proper ideal in particular, 

this is what we want to prove. So, m is given,  

So, look at VL of m and what do we know? This is a proper ideal in R and L is algebraically 

closed. Therefore I can apply HNS 1 and conclude that this is non empty, this is non empty by 

HNS 1. So, that means, so that is there exist at least one point there, there exist a in L power n 

such that a belongs to this VL of M. So, I caught hold of a. 

Now, I should prove that this, this a is an algebraic point and also this equality. So, now for this, 

note that, what is a relation between a and m, IK and m. So, m is a maximal ideal and you see 

this point a is in, point a is in this. That means every polynomial in m, it will vanish at a. But 

these are all polynomials in R, which vanish at a. Therefore clearly m is contained in IK of a, 

which is contained in R. 

Now, note that, this is also proper ideal that we have noted. Because not one cannot vanish an 

any point. Therefore they one, the constant polynomial 1 is not here. That mean this is a proper 

ideal and this is maximal therefore better equality here. So, therefore M has to be equal to IK of 

a, So, this is clear. So, we prove the equality. Now, it remains to prove that this point must be 

algebraic point. 

Now, what did we prove in earlier corollary? Earlier corollary, we approved that, if this IK of a 

is a maximal ideal, then that point must be algebraic. But now, by corollary 3, a is K algebraic 

point in L power n. Since, IK of a is a maximal ideal, in R. That is precisely, what we proved in 

corollary 3 that IK is maximal if and only if the point is algebraic. So, we have proved the first 

part of this corollary and the next, for the proof of next part, what do we need to prove? 

So, now it remains to prove that phi a equal to phi b, for or a, b, in L power n, K algebraic points 

if and only if, if and only if a and b are K conjugates. This is what we need to prove. For this I 

will state one simple lemma, which is useful in its own right and therefore when we prove that 

this will follow immediately from that lemma. So, let us go back to the, I will state that lemma. 

So, I will just mention here, now we use the following lemma. So, what is a lemma? So, we will 

use the similar notation.  
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So, lemma. So, first of all a and b let a, comma b, b in L power n. Then the following are 

equivalent. So, what are the statements? 1, the two ideals are equal IK a equal to IK b. 2, a and b 

are K conjugates, actually we are interested in 1, if and only if 2. That is what we wanted to 

prove, if the two ideals are equal, then they are K conjugates. So, if you prove lemma, the prove 

of the corollary 4 will be finished. 

And third one, third one is also very interesting. So, if I take the singleton a and the closure of 

that equal to singleton b, the closure of that. Now, so where, note that, we have defined a 

topology on L power n. So, where this a bar is the closure of singleton a, which is a subset of L, 

in a Zariski topology. What is a closure of a subset in a topological space? Let me just recall 

quickly.  

So, if X is a topological space and Y is a subset of X, then the closure of Y in X is the smallest 

closed subset of X, which contain Y and it is denoted by Y closure, Y bar here. Also this is a 

general definition in a general topological space. Here we have Zariski topology on this L, where 

the closed sets are precisely the K algebraic sets and this is a closure of that, this singleton a may 

not be closed.  

So, closure of that is the smallest closed set, which contain a. So, we will prove the equivalence 

of this, proof of lemma. What do you know? We know that, we know that, this IK is definitely 



prime ideal that we have observed earlier. Because R mod IK of a, this is isomorphic to K a1 to 

an. This is a case of algebra of L, generated by L, case of algebra of L, generated by a1 to an. So, 

which is may not be a field.  

But we assume the points are algebraic, then definitely this is a maximal ideal. So, this 

isomorphism we know, this isomorphism is as a K algebra isomorphism. So, we have this. So, let 

us put closure of a bar, closure of a. This is a closed set, this is a smallest closed set, which 

contains the point a. This I want to call it W. So, what is W? W must be, so this K algebraic 

subset of L power n and because by definition it is closed and is the smallest. Because it is a 

closure, smallest K algebraic subset of L power n and it contains with a belonging to W, that is 

W. 

Now, because, now what is a relation between W and IK a. So, let us write down. So, first of all 

note that, what is W which is and we have an ideal IK, this is ideal in R and I can take V of that 

VL of this. So, now, this is also in Ln, this is also in Ln and what is a relation between the two? 

So, this one is by definition all those points, which vanish at this, all these polynomials in this.  

So, this is the 0 common 0 set of all polynomial, which vanish at a and W, W contains a. 

Therefore W, I want to claim that, this is contained here. Because if I want to check that this W 

is contained here, I must prove that, no this will follow just from the fact that it is the smallest. 

So, because note that a belong here, a belongs here and therefore and this is also close. Because 

it is a K algebraic set. But this was a smallest therefore this contained here. 

So, this I would say, simply by definition of closure, this is contained here. On the other hand, 

what do I know? On the other hand I know a belonging to W. So, singleton a is contained in W. 

Therefore when I apply IK, IK reverses the inclusion. So, therefore this will imply IK of a is 

bigger than IK of W. But what do we know about IK? So, it contain this.  

Therefore if I apply VL now on both sides. So, that implies VL of IK a, which is contained in VL 

of IK W. But this is equal to W, but this contains W, that we have just noted. Therefore all are 

equal, therefore from here also we can conclude this is equal.  
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So, altogether we conclude, altogether we know that, IK a equal to IK W. So, the closure and the 

point at the same ideal. So, this is also IK of by definition IK of the closure of a and remember 

we have use HNS, because we have use this equalities, that V and L are, we approved the ideals 

are equal. Now, you get the exact sequence.  

So, this also proves by the way, so I do not need any more. So, we consider, we have exact 

sequences, which are the exact sequences 0, IK a to R and to K a1 to an, to 0. This is our 

evaluation map at a and then similarly for b. Then we have epsilon b, K a1 to an, b1 to bn to 0 



and this is a K algebra isomorphism. This is a K algebra homomorphism, K algebra 

homomorphism, this is also K algebra homomorphism, surjective, this is surjective and this is the 

kernels of this and what is we wanted to prove?  

We wanted to prove, we wanted to prove that, the point or conjugates that means if there is a K 

algebra isomorphism here, which maps ai to bi, then the ideals are equal. That was one of the. 

So, let me show you 4 the statement. So, you see here, two ideals are equal, if they are 

conjugates and if the closures are equal.  

So, now from this exact sequence, from this two exact sequences, if there is a K algebra 

isomorphism here. That means they are K conjugates these points and then if this is a, this map is 

ai to bi, then there is an identity map here, is equal, identity map here, we will make this diagram 

commutative. Because what is a epsilon, they do is the polynomial evaluate at ais, but ais goes to 

bi. So, it will go to the same evaluation. 

So, this will also go to the same evaluation. So, this diagram is commutative and therefore from 

here we will prove that, if this an isomorphism, these two ideals are equal then. So, what we 

prove is, if this is an isomorphism, then this is, so that proves. So, these proves 3 implies 1, not 3, 

2 implies 1. See, because 2, either conjugates the ideals are equal.  

So, if they are conjugates that mean there is a K algebra isomorphism, which maps ai to bi, 

therefore this diagram will commutative with identity map here and therefore the kernels are 

same. Therefore this two are equal that is precisely a, this proves this implication and what about 

the third one.  

Now you note that a closure equal to we are noted already this that is VL of I a, and I a equal to 

IK. This is are all IKs, VL of IK a this is by nullstellensatz again, this is by HNS, this is by HNS. 

I have applied to this ideal. Now HNS is 2 and this you have noted above. That also proves, but 

on the other hand, this is also we have noted that, this is also closures. 

So, this is IK of a closure, this all we have noted above here. So, since this equalities are noted 

above it follows that the proof, the proof of lemma follows. So, once again let me just show you. 

So, we approved 1 implies 2, actually 1 if and only if 2 we approved. Because this and then this 

closures are equal also, that we have checked with closures are, the closures are this.  



If the ideals are equal, closures are same and so, I would just say verify this in detail. It is not 

difficult, it is just tying of things together. So, that proves corollary 4. Now the next corollary 

that is also very important. So, let me write on the next page. 
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Corollary 5, this is also some form of HNS. So, let us call it HNS 4. What is a corollary? We are 

now assuming capital K equal to capital L, is algebraically closed. This is actually the classical 

case, this is classical. So, if L equal to K, is algebraically closed. For example, if you take K 

equals to C, K equal to L equal to C or K equal to L equal to Q bar, where this is arithmetic 

geometry, when you take K equal to Q.  

In this K, then the map we have a natural map from K power n to Spm of K Xa to Xn, There is 

no other field other then K and it is assumed to be algebraically closed. The point a, a1 to an, 

these maps to ma which is by definition ideal generated by X1 minus a1 etc etc, Xn minus an, we 

have already checked earlier that such a maximal ideal always belong here such ideal always 

belong there and map is also injective, that also we have already checked earlier.  

But this corollary, say that this map is bijective. Also remember all points are now algebraic. 

Because everybody in K power n. So, each ai is algebraic over K, in fact it is an element in K. 

So, this map is bijective, moreover what is C of any ideal? So, moreover let this map is called 

phi, in fact it is the same. 



So, phi of V, now instead of L I will read K, VK of an ideal a. So, for an ideal a in the ring 

polynomial ring over a field we have image of this closed set. This is a closed set in Kn, the 

closed set in Kn with respect to the Zariski topology, image of that closed set it is what? Image 

of that closed set is precisely all those maximal ideals M. Now, let me call it, Kn X1 to Xn, 

which should contain a, a is contained in m. 

So, we already checked this map is injective and we are already checked in corollary 4, it is 

surjective, because this is nothing but Ia,. So, proof, injectivity is clear in fact for any field, in 

fact for every field K for that you do not need injectivity. Also I should have said before this, ma 

is clearly in the Spm, this is, this is because remember I gave a proof by using Taylor's theorem 

and now to surjectivity, surjectivity, follows from the first part of corollary 4, which needs, this 

needs K algebraically closed.  

So, therefore it is bijective, therefore phi is bijective. So, injectivity of phi surjectivity of phi and 

therefore bijective is clear. Now, what is moreover? Moreover I want to prove that, if I take a 

point here, if I take this is, this is a point and this is a phi of that. So, what do you need to prove? 

Also what do you need the, what is a relation between a?  

So, note that, a point a belongs to VK of an ideal, if and only if, a is contained in the maximal 

ideal ma, this is very clear. Because if a belongs here, means a vanish at every point of every 

polynomial in the ideal a. This every polynomial in the ideal a, vanishes at this a. Therefore that 

polynomial will belong to this ideal, that is clear. Because this is precisely the maximal ideal is 

precisely all polynomials is vanished at when you (())(31:56) a1 to an. 

So, this implication is clear. Similarly, if polynomial belongs here, then it vanish at ai that means 

this implication is clear and this means. So, if I take any point on the LHS here. Then phi of that 

will obviously phi of a is ma. So, that is this, so this proves the last part. So, that proves corollary 

5 and also I want to remark here, the remark will come after the next corollary. So, let me prove 

the next corollary. 
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So, corollary 6. What is the corollary 6 says? Corollary 6 says, that if I have any ideal. So, let K 

be a field and a an ideal in the polynomial ring in several variables or 1 variable, I of K X, X may 

be several variable or 1 variable, finitely may need but and E over K be any field extension. So, 

let K be a field a be an ideal in the polynomial ring and E over K be the any field extension. 

Then, when I extend this ideal a to the polynomial ring over E. This is not equal to X, if a is non 

unit ideal.  

So, if somebody is a proper ideal, then when I extend it to the field K, field E, then also it is a 

proper ideal. That is the meaning of this, this is proper, this is also, if this is proper, that is also 

proper. Normally it is not true under a field extension, under arbitrary extensions, from ideals 

may be equal after that. For example if you take the ring of integers and Q. This is not a field of 

course. But this is a field, if I take ideal generated by 2 here and extend that ideal generated by 2 

to Q. This is a unit ideal in Q. Because it is a non-zero ideal and field has only 2 ideals, either 

unit ideal or 0 ideal. 

So, this is, so proof. So, we have given suppose, if the ideal a is a proper ideal in K X, then I 

know VL of a, is non-empty. So, if you like, you can take L equal to algebraic closure of K or 

you can take better, you do not take algebraic. So, take where you can take L equal to algebraic 

closure of E bigger field, this is the algebraic closure of E. It is algebraically closed, therefore 



this is by HNS 1. We have an ideal below, which is proper. Then the VL of that must be non 

empty set.  

But then that implies what is VL of extended ideal a E X, if a is generated, we know a is 

generated by finitely mini polynomial with coefficients in K. But this extended ideal we also be 

generated by the same generating set. This is generated by those polynomials, whose coefficients 

are in K. So, if a is generated, by F1 to Fm.  

This is also generated by F1 to Fm, there is no problem and so this is a common zeros of this 

polynomials in L. Therefore this is, this set is not changing, which is non empty. So, here is an 

ideal in this polynomial ring in E X and VL of that set is non-empty. Then this ideal cannot be 

unit ideal. Because if it is unit ideal, 1 will belong there and then this set will be empty set. So, 

therefore this ideal cannot be the unit ideal in this. 

So, here I just want to mention, just for clarity, this X is many variables, X1 to Xn. So, that 

proves corollary 6, I have few more corollaries. But we do not have time now and we will 

continue this in the next lecture along with some more consequences of HNS and then we will go 

to, once we finish this, this is a big cornerstone in algebraic geometry. Once you finish this, then 

we will go to topological properties of the Zariski topology, on L power n. Thank you very 

much, see you in the next lecture.  


