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Welcome back to this later half of today's lecture. As I said in the earlier half that we will prove 

Hilbert’s Nullstelensatz today and I just want to remind you that L algebraically closed is very 

very important. So, without that this Nullstelensatz is not true. So, for algebraic geometry it is 

very important to consider L is algebraically closed and then later on we can specialize L equal 

to K and K is algebraically closed and then we will get a classical set up.  
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So, today now I want to prove Hilbert's Nullstellensatz. It is very easy to pronounce this if you 

know where to break and at least Indians have some experience those who have learned Sanskrit 

to give where the breaking should be, so the breaking should be null and stellen. So, that 

becomes Zero place Theorem. So, theorem which tells you about which places it is 0. So, let us 

go back. So, I want to little bit write this, Null stellen satz. So, that is where one breaks.  

So, the L over K field extension and L is algebraically closed. These are our assumptions. So, 

this is what we will assume today and typical case for example, so of course C over R is there 

but also the case C over Q also included or Q bar over Q. This cases are interesting classical at 

least.  

Alright so, and I take a arbitrary ideal a, any ideal I, R where R we are abbreviating for the 

polynomial ring over a field K in n indeterminates. So, this is what we have ideal and first, so we 

are using this. We have defined V L of ideal a and this was a subset of L power m and this we 

called it K algebraic set. So, the first question is when is there is at least one solution? See, it is 

like when we studied linear algebra and when we have given a system of linear equations, your 

first question is how do you decide this system is consistent.  

Those days in the linear algebra the term consistent is used to say that when do they have 

common solution? So, the question is when does it have, what condition do you want to put on 

the ideal a, so that this algebraic set is definitely non empty. So, that means the polynomials 



which defined this ideal, so if a is defined by the polynomial f1 to fm that means a is generated 

by these polynomials. Now, the question we are asking is when do this finitely many 

polynomials f1 to fm in n indeterminates over field K when do they have the common solution 

and that is precisely what I will call is HNS, HNS1. HNS1 says that so L algebraically closed.  

I just want to remind you that we are assuming L is algebraically closed. If the ideal A, obviously 

if the ideal A is not a proper ideal, if one belongs to that then there is no hope that V L of the 

constant polynomial 1 will have no 0. So, there is no hope. So, if ideal A is a proper ideal is not 

the whole ring R then VL of A is definitely non empty. That means this system of polynomials is 

consistent.  

That means they have a common 0 at least 1. How many that is more difficult question and we 

will not address immediately now, but sometimes we will talk about it. So, this is the Hilbert's 

Nullstellensatz 1. So, this is also called the classical Hilbert's Nullstellensatz. So, I will just say 

orally. This is HNS1. It is also called classical Nullstellensatz.  

HNS2 is again, remember L is algebraically closed then IK of VL of ideal A equal to the root of 

the radical ideal of A. This is true for every ideal A in the ring R and sometimes some books will 

also call this as a geometric formulation. It is called geometric formulation because it gives a 

bridge between algebra and geometry as we saw.  

This equality make, happens when both the map are, the map is bijective. So, therefore it is 

called a geometric formulation. If you like this is called a classical formulation and third one 

HNS3, this is also called algebraic formulation or also it is in the literature also it is called 

Zariski's Lemma because Zariski has proved it, also proved this. So, what is it? So, as you can 

guess it by the name algebraic formulation that it will not involve geometry at all. In fact it will 

not involve this language of algebraic sets.  

So, I will state in the simple terms that. So, let K over k, capital K over small k be a field 

extension if the bigger field K, K is algebra, K is, if capital K is a k-algebra of finite type then 

that extension capital K over k is algebraic extension. So, now I will have to recall you these 

terms. And obviously this term you already know it, but I will recall it. So, we have these three 

statements, HNS1, HNS2, HNS3 and as you can see that this HNS3 have nothing to do with 



algebraic sets and V and I and so on and HNS1 is does not involve the ideal IK but HNS2 

involves.  

So, it appears that HNS2 looks stronger but I am going to prove that these statements are 

equivalent. So, and I will recall this concept. So, finite type is what? Finite type means this 

capital K is a quotient residue class algebra, K algebra of a polynomial ring in finitely many 

variables over the small k. That is a finite type.  

That means as an algebra it is generated by finitely many elements. So, in the notation this means 

capital K equal to k and generated by this notation. I hope you have not forgotten this notation as 

an algebra. It is generated by finitely many elements x1 to xn in capital K but this is precisely the 

quotient of the polynomial ring in n variables modulo some ideal. So, that is the finite type 

algebra over a field.  

Actually we have also studied finite type algebras over arbitrary commutative ring that means 

they are residue class ring of a polynomial algebra over the base ring A modulo some ideal and 

algebraic extension means every element of capital K satisfies some non zero polynomial over k. 

So, this again I will recall when we start proving. So, what are we going to prove? So, let us 

write down.  
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So, we shall prove that, I want to prove they are equivalent. So, I will prove that HNS1 is 

equivalent to HNS2 and HNS2 is equivalent to HNS3. So, this prove the equivalences. So, we 



shall prove this if and only if, this if and only if and obviously then if I have to prove that they 

are all true then I have to prove one of them at least and I will then choose which one is the 

easiest to prove and namely HNS3.  

So, these three things we are going to prove. One is this, two is this and three is this and that will 

prove that all these are equivalent and they are true. In particular HNS2 is true and that is the 

geometric formulation and that is very useful for setting up modern algebraic geometry. So, let 

us prove very easily. So, I am going to first concentrate on this one.  

So, first we will prove that HNS1 implies HNS2. So, what is given to us? It is given to us L over 

K field extension and L is algebraically closed and we have also given ideal a in the polynomial 

ring R, where R is K x1 to xn. This is given to us and what is want to prove? We want to prove 

so I will write down here.  

To prove IK of VL of the ideal a equal to the radical ideal of a. This is what we want to prove 

and one implication is easy and that was this. This we have already easy one because if a 

polynomial is here the power is in the ideal a. That power will vanish and every point here and 

therefore by definition that power will belong to this ideal IK and because IK is a radical ideal 

that polynomial itself will belong to the IK.  

So, this inclusion was easy. So, the more difficult one is this. I will remind you this is what we 

are looking for the proof and what are we allowed to use? We are allowed to use HNS1 that 

means whenever I have an algebraically closed field, whenever ideal a is there which is not a unit 

ideal then VL of that a is non-empty. This is what we are allowed to use.  

So, if you want to apply that we will have to create a situation like that. So, let us start the proof. 

So, I will start a polynomial on this side. This is ideal in R. So, I will take a polynomial here and 

I will prove that polynomial is here.  

So, let f be a polynomial in IK of VL and as I said this a is generated by finitely many 

polynomial that we know from Hilbert's Basis Theorem. So, VL of f1 to fm where if you like 

ideal a is generated by f1 to fm finitely many polynomials, in where f1 to fm are polynomials in 

R which is a polynomial over K in X1 to Xn variables. So, that is the situation and what is that 



we want to prove? We want to prove that this polynomial f belongs to this. So, I will write on 

this corner.  

Our aim is Goal f should belong to the radical ideal of a. This is our goal. So, now somehow I 

have to create a situation so that I can use HNS1. Right now there is no situation. So, consider W 

is VL of f1 to fm comma g, where g is 1 minus Xn plus 1 times f.  

This is now remember I introduced one extra variable here and this is I use this polynomial and 

this is now algebraic set not in Ln but this is in Ln plus 1 and then I want to check that this set W 

is empty or non-empty. So, right now it is real of this set. So, suppose there is a point. It has a 

point in L power n. That means suppose it has a, comma an plus 1 belonging to Ln plus 1 and 

suppose this point belongs to W.  

Then what happens? Remember this a is in L power n and an plus 1 is in L. If it is in W then all 

these polynomial should vanish there. Then all these f should vanish there. So, fj of a is 0 for j 

equal to 1 to m and also the g a, an plus 1 now, see when I plug this into fj there is no Xn there, 

Xn plus 1 present there.  

So, therefore it will only be fj at a and this is also 0. This we know by the definition of this W so 

because it is here but what does one mean by this g is 0. That means when I am plug it in here a 

and an plus 1, so this will this polynomial f is already 0 there. So, therefore this condition is 

equivalent to saying so this is already 0 so that means this is not 0 but this is 1. Sorry, this is not 

0. This should be 1 because when I plug this there in g this is already 0 at a because f is a 

polynomial in this and this polynomial should vanish on everybody here.  

But this a is already so this means a is already in VL of this. Therefore, this is 1. So, if such a 

point belong to W then already W g of a at n plus 1 is 0 but this is already contradiction because 

on other hand g should vanish there. On the other hand g of an plus 1 should be 0. This is a 

contradiction.  

So this is because f of a is 0 because f belong to this. So, therefore there is in this case the W has 

to be empty. So, if W is non-empty it will have some point and we are getting a contradiction. So, 

this shows that this set W is empty and then what is our HNS says? If this ideal where not a unit 

ideal then W has to be non-empty and hence by HNS1, the ideal generated by these polynomials 



f1 fm comma g this should be the whole ideal R which is the polynomial ring in n variable over 

K.  

Then what happens? Remember our goal is to prove this that f belongs to the root, that is our 

goal. Alright, this ideal is a unit ideal means 1 should belong to the linear combination of these 

polynomials with coefficients in the ring R.  
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So, that means. So, therefore 1 belongs to the ideals generated by f1 to fm, comma g but 

remember g is 1 minus Xn plus 1 times f. So, that is I can write 1 as sum polynomials hi's times 

variables X1 to Xn plus 1 times fi's plus sum polynomial h times g that is 1 minus Xn plus 1. 



So, here also to be specific I will write h is X1 to Xn plus 1 times g which is 1 minus Xn plus 1 f 

because we are working in the ring K X1 to Xn, comma Xn plus 1. So, the coefficient should be 

from this ring. So, let me just check what did I write up. Alright, so this is not correct, this is R. I 

should write here R Xn plus 1 which is K X1 Xn, comma Xn plus 1.  

You see because W is empty and W is not in Ln but L power n plus 1. Therefore we have to take 

one more variable. So, we have this equation. Remember both these sides are this is a constant 

polynomial 1 and this is the other side is the polynomials in the ring polynomial K X1 to Xn plus 

1 variables. So, in this polynomial identity I can substitute, so substitute the variable Xn plus 1 

equal to 1 over f.  

We have seen that in the polynomial we can substitute any element in the K Algebra and K 

Algebra I will take in the quotient field. So, 1 by f will be there. So, therefore I am allowed to 

substitute and then what happens? The substitution is a ring homomorphism so I can rearrange 

the terms addition, multiplication, etcetera. So, therefore this side will not change so to get, what 

do we get? 

This LHS will not change which will be 1 only. This side, this will become 1 over f, so 

summation this is from i equal to 1 to m hi X1 to Xn nothing there and this is 1 over f and then fi 

as it is because there is no Xn plus 1 there and h of Xn to Xn and 1 over f, this. But this when I 

put Xn plus 1 equal to 1 over f, this is 1 minus f over f and this is 0 then. Therefore, this term 

altogether will be 0, that is not contributing and this term has 1 over f in the denominator and 

because this is a polynomial Xn will not have arbitrary large degree terms so I can take the 

common denominator and write this as so 1 equal to then I want to clear the denominator so this 

will be equal to i equal to 1 to m and instead of hi there will be some other polynomials gi X1 to 

Xn and divided by some power of f and I will take by supplying up and down common 

denominator. 

So, it will be f power some power fs and this polynomial fi is as it is for some s a natural number. 

So, then what do we get from here? Now you cross multiply. You clear this denominator so we 

will get f power s so this will become f power s will be equal to summation i equal to 1 to m 

these gi X1 to Xn fi. But these are now where? These are in the polynomials in n variable with 



coefficients in K which was our ring R. So, this is a R linear combination of this polynomial 

which belongs to the ideal generated by f1 to fm. 

But this ideal was precisely the ideal A. So, we have proved that some power of f belongs to the 

ideal A so that means the polynomial f itself belongs to the root ideal A. So, and remember I will 

show you what our goal was. Our goal was to prove f belong to the radical ideal of A and that is 

where we have succeeded. So, this proves HNS1 implies HNS2. This is what we were trying to 

prove and the place where we have used HNS1 I will show you. This is the place where we have 

used HNS1. 

That is because W is empty then this ideal has to be the whole unit ideal. So, now the converse 

that is HNS2 implies HNS1.  
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So, conversely to prove HNS2 implies HNS1. So, we want to prove HNS1 by using HNS2. So, 

as usual what is the assumption we should always write. L over K field extension and we are 

assuming L algebraically closed and we want to prove if we have an ideal a in the ring R and if 

this ideal a is proper ideal then to prove, what do you want to prove?  

We want to prove that V L of the ideal a is non empty. This is what we want to prove and our 

assumption is this L algebra is algebraically closed of course and we are allowed to use HNS2. 

So, suppose on the contrary that V L of this ideal a is empty. Then we should get a contradiction. 



Well, if the VL of the ideal I is empty then what will be the I K? I K of V L of a, this will be 

equal to I K of empty set. But I K of empty set is what? 

I K of empty set is a whole ring R. Because that is I K of 0. This was the first property I will state. 

This is the ring R which is a polynomial ring in n variables. But what do HNS2 says in this 

situation?  

But by HNS2 we have radical of the ideal a equal to I K of V L of a for any ideal that was HNS2. 

But this is R. So, therefore I proved that the root radical ideal of a is R. Then it is very easy to see 

that a is also the unit ideal R because 1 belongs here. That means 1 power 1, 1 power any integer 

n that is also 1 and that will also belong to that ideal a then.  

So, this is correct which is a contradiction to our assumption a is not R. So, this proves this 

completes the proof of HNS1 if and only if HNS2. Now, we will have to prove that next we want 

to prove that HNS1 and HNS3 are equivalent. So, let us finish that prove also. Now, to prove 

HNS1 implies HNS3.  

So, what is the assumption again? Now, I want to prove HNS1. I am assuming HNS1. That 

means whenever L is algebraically closed field extension of field K and there is an ideal which is 

a non unit ideal then V of that is non-empty. That is the assumption and what is HNS3?  

HNS3 have nothing to do with algebraically closed and L and K and I and V. So, what is to 

prove? So, to prove that, to prove what? To prove that, I will write the statement what do we 

want to prove. Whenever capital K over small k is a field extension, capital K is a K algebra of 

finite type then what we want to prove, then to prove that K is algebraic over k. This is what we 

want to prove.  

So, let us start proving it. So, I have given K which is K algebra of finite type. So, therefore we 

have given capital K equal to K generated by finitely many elements as K algebras but this 

means this is a quotient of a polynomial algebra in n variables modulo some ideal and that ideal 

because this is a field, that ideal has to be the maximal ideal with m belonging to Spm of capital 

K X1 to Xn because this is a field. If it is an ideal so that the residue class algebra is a field then 

this ideal must be a maximal ideal.  



That is a characterization of maximal ideal. So, that is the field or that is the maximal ideal. Now, 

consider ultimately we want to use HNS1. That means we have to have algebraically closed field 

and then so consider L equal to k bar, small k bar. This is the algebraic closure of the small k. 

What is algebraic closure? Algebraic closure by definition is the smallest algebraically closed 

field which contains k. That means this k bar is algebraic over k. This extension is algebraic and 

if there is any other algebraic (ex) and then k bar has no algebraic extension. So, this is 1 and k 

bar has no proper algebraic extension.  

Or in other words, so let me write in other words this is an algebraic extension and k bar is 

algebraically closed. It is a theorem of Stainitz that every field has an algebraic closure. In 

particular this given k, small k has an algebraic closure. If we have not seen this theorem I will 

recommend you to have a look at the course I gave in the last year on Galois Theory. So, all 

these things are proved there very precisely and very neatly.  

This is NPTEL course 2018 Jan. So, we assume that every field has algebraic closure and L 

equal to that we take and then now this m is a maximal ideal. So, m is a maximal ideal in the 

polynomial ring in n variables and therefore it is a proper ideal. So, m is therefore is not equal to 

the whole this and n and this is a small k.  

I also want to correct here. This is also small k it is not capital K. This is also small k and this is 

also small k. So, this is not proper ideal. Therefore, it is polynomial not the whole ring. So, it is a 

proper ideal.  

Therefore if I take VL of this ideal m, m is also maximal. So, prime, so therefore m is actually a 

radical ideal, so m is a radical ideal anyway that is not needed here. So, this is my ring R now 

and I am applying HNS1 to this algebraic set. So, HNS1 to the pair, L equal to k bar over k. This 

is what I am applying HNS1. So by HNS1 applied to this and this. So, this is non-empty. This is 

by HNS1. Therefore, there is a point here. So, that means I can find here a, a1 to an in L power n.  

Let us abbreviate it a and which belongs to a belongs to VL of m because it is non-empty. So, 

there is a point there but now I look at the K algebra homomorphism. So, that means this a will 

vanish at every polynomial in m. So, that is f of a is 0 for every f in the maximal ideal m. But this 

means I have a map.  



So, this means look at the k algebra homomorphism. So, that I have to define it in the polynomial 

ring X1 to Xn. I just have to give where the variables go and the k algebra here is the k bar which 

is L. So, here I take the substitution map by Xi going to ai. This is a substitution map.  

If I call this as f suffix a, this is a substitution map. That means what? This proves that, there 

exist a k algebra homomorphism. That implies there exist a K algebra homomorphism which 

maps Xi to ai and therefore a polynomial each so I want to assert from here. So, what is a kernel?  

Kernel is a by all the kernel of this f is precisely this m because of this. So, let me write on the 

next page.  
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So, the kernel of this k algebra homomorphism, f suffix a is precisely the maximal ideal m but 

then it will induce a ring homomorphism, k algebra homomorphism from this modulo m inside k 

bar. But this ring is precisely this residue class ring is precisely our given field capital K. So, that 

means there is a small k algebra homomorphism from k to k bar.  

But this is injective. That means capital K as a field is sitting inside k bar. So, that implies capital 

K is algebraic over k. So, this proves HNS3. Now, the converse, in the next lecture we will prove 

the converse and also we will prove HNS3.  

So, that will complete the proof of these three formulations of Hilbert's Nullstellensatz and in 

exercises I will give you many more (())(46:38) HNS4, HNS5, HNS6. Some of them I will do it 



in lectures and some I will put it in assignments. So, with this I thank you very much and we will 

continue in the next lecture.  


