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Further properties of Modules and Module of Fractions 

So, welcome back to this second half of today's lecture. Now, I want to do, I want to the 

discuss about the chain conditions. Namely more precisely if a module is noetherian if the S 

inverse of that module is also noetherian or if the module is artinian is the S inverse of that 

module is also artinian and thing like this. 

So, before I start the study, I want to recall one definition which you might have heard in 

basically course like set theory or even the course like discrete mathematics and so on is very 

useful language. So, let me define. 

(Refer Slide Time 01:14) 

 

So, definition an ordered set X less equal to so, a set with an order, order means reflexive, 

transitive and anti symmetric relation that together with a set is the pair is called an ordered 

set, the normally in many modern books it is called a partially ordered set but, as we have 

seen earlier also I am using only ordered set. 

So, if you have an ordered set is called a lattice if, for every pair xy in X both sup, supremum 

of the subset x less xy and infimum of xy exist, exist in X of course in X so, what is the 

supremum? 



Supremum is a look at all upper bounds of the set x and y and take the least among them 

similarly, infimum is take all lower bounds of this at x and y and take this, the maximum of 

the lower bound. So, this is the minimum and this is the maximum they should exist then you 

call it a lattice. For example so, let us write down some examples. 

One, if x is, if X less equal to is totally ordered that means any two elements are comparable 

then it is a lattice or more concrete example suppose, you have a set Y is any set and let us 

take a power set of Y this is the power set of Y that means set of all subsets of Y with natural 

inclusion as an order so, we are considering this, these ordered set PY and natural inclusion 

this is a lattice and what is the supremum? 

If, I have two subsets A and B, if A and B are two subsets of Y that is there are two elements 

of the power set then sup A, comma B is A union B and Inf A, comma B is a intersection B. 

So, these are obviously the supremum and infimum in this power set. So, set theory basically 

we study these power set with this order and one more example. 

If A is any ring always commutative for us then the set of ideals IA this is the set of ideals in 

A this is a lattice with respect to the inclusion of course so, that is we are considering this IA 

inclusion this is a lattice so, I have to tell you, what is supremum and infimum? 

So, supremum of two ideals A, comma B obviously it is A plus B and infimum of A, comma 

B is intersection this is obvious, this is an upper bound for A and B and it is the small s upper 

bound similarly, this is and we have been studying this lattice.  
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Alright, one more example. Fourth, if V is an A-module then, the sub modules A sub module 

of V we have denoted by this s A V with respect to the usual inclusion this is also a lattice 

and what are the supremum and infimum? Obviously, sup if I have two sub modules V prime 

and V double prime that should be V prime plus V double prime, the small s sub module of V 

which contain both so, V prime and V double prime are sub modules of V A-sub modules 

then we know the sum is the smallest so, that means it is the supremum. 

Similarly, the infimum. V prime V double prime is precisely the V prime intersection V 

double prime and both are sub modules so, these are the supremum and infimum in these sets. 

So, we have been studying for each module we have been studying this lattice. Now, one 

more definition I will need it. So, if I have two lattices, what is the homomorphism of ordered 

set? 

Homomorphism of order sets is precisely the map so, f X less equal to and I should actually 

write now, they are two orders in also this is suffix X and Y less equal to Y, these are two 

ordered set and a map between them is called a homomorphism of ordered sets. If, it should 

preserve if x less equal to y, x less equal to x prime in x should imply f of x less equal to y f 

of x prime, if this is so, that means it should be increasing map then it is called a 

homomorphism of ordered set. 



Similarly, we can talk about homomorphism of lattices that means it should not be only 

ordered homomorphism of ordered set but, it should also respect the sup and Inf. So, 

similarly, one can define homomorphism of lattices and what should be? 

So, it should preserve order, it should preserve sup and should preserve Inf so, I will write 

quickly sup of x, comma x prime and sup of fx, f x prime so, f is this and Inf of, and Inf of fx, 

f prime. So, you make a definition so, I will say make this more precise I may not use it so 

often but just because we define the lattice so what do we do in earlier lecture now let me this 

language. 
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So, we have so, let A B be a ring S multiplicatively closed set and V be an A-module and 

remember now, I am, I want to discuss if V is noetherian or not and if V noetherian then what 

happened to S inverse V or V is artinian in what happened S inverse of V and so on or when 

it is a ring what happened to the ring S inverse A and so on. 

So, then we have this s, S inverse A S inverse V these are all sub modules of S inverse V 

module as S inverse A sub modules of S inverse V. So, note that here we have this iota map 

from the ring A to the ring S inverse A and in for V also we have this map, this is iota V 

suffix S, this is iota AS this is a ring homomorphism and this is made this S inverse we have 

the S inverse A-module so, this makes sense and then we have S of V these are the sub 

modules of A and I want to define a map here. 



So, let us recall the definition of noetherian module that means these ordered set here with 

respect to inclusion has maximal elements, if it has minimal elements then we say it is 

artinian, if it has maximal elements then we say it is artinian. 

So, we have a map here namely if I have module, if I have a sub module W of S inverse V 

this is S inverse A sub module and how do you get a module in V now? This one, you map 

this W to, let me write it UW, what is UW? UW by definition it is all those elements this 

should be a module, sub module of V so, it is all those elements x in V such that x by 1 

belongs to the given W. 

So, this is precisely we have W sub module here, this is precisely the inverse image of this W 

under these iota map. So, iVS inverse of W that is precisely this UW so, if x over S is here 

then x over 1 is also here because, it is S inverse A sub module and therefore, image is 

precisely this. 

So, from a S inverse A sub module we got A sub module of V and this operation this 

operation U moreover it is inclusion preserving. Moreover, if W is contained in W prime 

contained in S inverse V, S inverse A sub modules. Then UW is contained in UW prime 

contained in V these are A sub modules. What does that mean? 

That means this is a ordered homomorphism this is an order set with respect to inclusion, this 

also order set with respect to the inclusion and inclusion is preserving that means this map 

respect the inclusion, that means this is so, this is, this map is in fact a homomorphism of 

lattices. What do you have to check for this? 

It preserves order and also it preserves the supremums, but supremum is what? Supremum is 

the sum but, this preserve the sum also, that is very easy to check because, we have checked 

that and it preserves the intersection also so, therefore, this is a homomorphism of lattices 

moreover it is injective, why it is injective? 

That means we need to check that, if I go back if W is and W prime they go to the same 

element then they are equal but that is clear from this definition that we have checked that 

what did we check? So, let me check since, I am explaining why is it injective since, let me 

write in the next page. 
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Since, we have checked that if I take W and then go to UW and then go back so, this is A, S 

inverse A is a sub module and this is A module, A sub module and from here, we can recover 

W because when I go push it to S inverse UW then, this is precisely W this is very easy to 

check from the definition of UW. Therefore, so, let me check this so first of all, this inclusion 

is obvious because, what is this? 

This is by definition these are all those element x in V such that x by 1 is in W. Now, when I 

take S inverse of this, that means I have to take S inverse of all this but they are so, if x 

belongs to UW then x by s will belong to W because this is same as 1 by s times x over 1, x 

over 1 is in W and therefore, 1 by s is in W because W was s inverse A sub module.  

So, this is therefore, this inclusion is clear. Conversely, if, take any element in W, if any y by 

s belong to W where y is in V and s is in S then U because, this is W is a S inverse A sub 

module, I can multiply by s by 1 times y by s this is equal to y by 1 this is also in W, if you 

like since, W is S inverse A sub module so I get, this is an element in, s by 1 is an element is 

S inverse A.  

Therefore, y by 1 is in W but that means y is in UW, but y is in UW then UW is a, then S 

inverse UW I can take the numerator Y and denominator s then this will belong to S inverse 

of UW. So, that means starting with an element in y over s we proved that y over s belongs to 

this. So, that means we have proved this inclusion, so all together we know equality here. 



So, therefore, if you start with W go to UW and then you can recover W from this, so that 

means this map is injective. So, the map is injective means what? 

That map is injective means the following, that means, if I take the sub modules S inverse A 

sub modules of the module S inverse V that is a sub lattice of the lattice of A sub modules of 

V. So, this is, this lattice is embedded in this lattice. So, this is a sub lattice, that means 

whatever property we have here, they are inherited here, because this is a sub of that, in 

particular, so in particular what we proved is the following, let me write what we proved. 
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In particular, if V is noetherian respectively artinian, then A module, then S inverse V is 

noetherian respectively artinian S inverse A modules. Remember, when is S, what was our 

definition of V is noetherian that means, the ordered set sAV with inclusion is noetherian 

ordered set, that was the definition of noetherian and definition of artinian that mean these 

ordered set is artinian, artinian ordered sets. What is a noetherian ordered set? 

That means every non empty subset has a maximal elements, here every non empty set has 

minimal elements and the dual of, one way to say is that dual of this is artinian. Therefore, we 

remember so many things we have checked at once by checking noetherian we also checked 

it is artinian because changing the order, not the same module but the opposite theorem the 

dual theorem. 

So, this is obvious because this ordered set and this ordered set is s suffix S inverse A S 

inverse V this inclusion, this ordered set is a sub, this is a sub of sAV same inclusion and sub 



which preserve the orders are same. Therefore, we have noted earlier that noetherian subset 

set of noetherian in order set is noetherian, subset of artinian order set is artinian. Therefore, 

these are now trivial statements, in particular so this is 1, 2 the ring A is noetherian 

respectively artinian ring, then the ring S inverse A is noetherian respectively artinian, this is 

because what are the sub modules of the ring A as A module? 

They are precisely the ideals in A, so and then these ideals in A with this is an ordered set if 

A is noetherian, the definition was this is ordered set is noetherian and artinian means this 

order set is artinian and then same argument that ideals in S inverse A this ordered set is a sub 

of IA natural inclusion this is a sub lattice. 

Therefore, subset of an ordered set, subset of a noetherian ordered set is again noetherian, 

subset of a artinian ordered set is again artinian. Therefore, these are trivial statement, but 

little bit more than this we, I want to write what happens to the generators.  
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So, this is, I want to write this as an example, let us write this as an example. So, let A be a 

ring and a S contained in A be a multiplicatively closed set, closed subset and V be an A 

module, and suppose, xi i in I be a family of elements in V and remember our notation that, 

when I write this sum i in I this may not be finite family, it could be infinite family, it could 

be countable it could be uncountable. 



So, if I write this notation, this is the sum, this is the smallest A sub module of V containing 

all xi, and therefore we have described order the elements, elements of this sub module are 

precisely the A linear, finite A linear combinations of the family xi’s. 

So, obviously given a family of elements, we have a map. So, this can also be described as 

following you have this module A power I, round bracket I remember this is a free module, 

this is a free A module with basis ei, standard basis ei. Well, what is this by definition? 

This is a subset of the product set A power I, these are tuples AI i in I and these are those 

tuples AI here if AI equal to 0 for almost all i in I. So, you are taking those tuples and that is a 

sub module and obviously any element of this tuple, any element of this module is actually a 

finite sum because this tuple these ai tuple, ai in A power round bracket I we can write this ai 

as summation ai ei i in I and this is indeed a finite sum because only finitely many ai’s are 

non-zero so it is really a finite sum. 

So, we have this re-module with this basis and the map from the free module if you want to 

define an A module homomorphism like in a linear algebra and vector spaces, it is enough to 

give values on the basis elements and then it can be uniquely extended to the module by 

extending to the (())(30:59). 

So, we have this homomorphism ei goes xi this is A-module homomorphism, this is 

therefore, where will any element will go, any element this tuple ai which is in A power 

round bracket I this will go to summation ai xi and this is really a finite sum, this is again a 

finite sum. 

Because only finitely many ai’s are non-zero. So, it make sense and the image of this if I call 

this as f, f is an A-module homomorphism, image of f is precisely the sum module, sum sub 

module that is also obvious. 

So, when is this map surjective? That means this image must be whole V that mean this xi is 

a generating system for V. So, let us note that so this map f depends on this family x so, I will 

just write suffix x. 
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So, therefore, this A xi i in I is sub module is a whole module if and only if the map fx is 

surjective and this means so this condition means the family xi i in I is a generating system 

for V that is, that means this so, this is, if and only if and this is if and only if. So, to check 

somebody is the generating system, we have to check that this map is surjective, but we know 

now, what happens if I apply S inverse to this so here this is, this fx was a map from the 

module A-module A power round bracket I to V this is fx, this is A module homomorphism. 

So, when I apply, when I take S inverse that is S inverse of this to S inverse of V and this is 

map is S inverse of fx but if this is surjective then this map is also surjective that we have 

checked and what is this map? 

This map is defined by take any element here any element here for example, where this ei by 

1 will go? ei by 1 will go to apply fx to ei and then by 1. So, this is f of, f x of ei divided by 1, 

but this is xi by 1 and this is surjective means it generates. So, that is if and only if so, what 

we proved is because this is surjective. 

Then the conclusion is xi by 1 in S inverse of V, i in I is a generating system for the S inverse 

A-module S inverse V. So, what did we check? If you start with a generating system for V 

then, that implies xi by 1 is also generating system. So, this the number is same, so if a 

module V generated by 1 element then S inverse V is also generated by 1 element because 

the number is not changing. So, what we, as a immediate consequences. 



If A is a PID Principle Ideal Domain, then S inverse A is also a PID, PID means every ideal 

is principle, every ideal is A sub module. So, if that A sub module is generated by 1 element 

then S inverse A sub module S inverse A is also generated by 1 element that is what we have 

proved for general modules. So, alright. Now, we can ask the similar question what happens 

when is this map surjective, surjectivity we have done. So, what is injectivity? Corresponding 

statement that is very easy again. 
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The family xi i in I is linearly independent over A if and only if the map fx is injective and 

also, we know if the map fx is injective then you know, the S inverse fx is injective, this is 

what we proved. But then, this is if and only if xi by 1 this family is linearly independent over 

S inverse A now, if you put together. So, together, all together if xi i in I is a basis of V over 

A if and only if this map fx which is a map from A round bracket I to V is bijective. 

But, this means the map fx, S inverse fx this is a map from S inverse of A round bracket I to 

S inverse V but this is also same as S inverse A and then outside bracket, round bracket I 

because, S inverse commutes with the direct sums. So, this is bijective but that means this 

family xi by 1 i in I is a basis of V so, that means if you have a free module then S inverse is 

also, this is basis of S inverse V as S inverse A-module. So, this means so, what we proved is, 

if you have free modules, goes to free modules under this correspondence. 
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See, we have defined now A, the ring A is here and the ring S inverse is here. So, if V is 

finitely generated remember we called it finite, finite then S inverse V is also finite, is what 

we have proved. If this is noetherian, then we have proved this is also noetherian, this is 

artinian then also we have proved this is artinian, if this is free then we have proved this is 

also free. So, good properties are carried over to the S inverse A. So, this is very, very useful 

concept moreover also if V splits as the direct sum here then S inverse V also splits as the 

direct sum of the same copies S inverse of Vi. 

So, these are very useful when you want to prove some properties about rings and modules 

over a ring and then you make a suitable localization so the property carried over that and in 

that, in the new ring it might be simpler to prove some assertion that is the reason why we are 

comparing all these properties. 

So, with this, I will stop today’s lecture. So, we have now quite a bit properties of localization 

and in the next lecture also I will discuss a little bit about radicals that is Jacobson, we 

already discuss about nilradical, now another radical ideal which is very important in the 

geometry is radical ideal, that I will do it in the next lecture and the lecture after that I will go 

back to geometry and study the topology, more properties of the risky topology and use them 

to prove, the first corner stone in algebraic geometry called Hilbert’s Nullstellensatz. Thank 

you very much. 


