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 Rings and Ideals  

Welcome to the second lecture on Introduction to Algebraic Geometry and Commutative 

Algebra. In the last lecture you have seen definition of Affine algebraic, k algebraic set.  
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So, I will not recall much because after few algebraic preliminaries we have to again 

recall something. So, I will directly start with some topics which we will need more often 

later, which I will recollect now, some of the basic stuff, so this is Rings and Ideals.  

I will also be brief in this section because I assume that many of you are acquainted with 

these basic topics, but for the sake of completeness, I will recall them briefly. So, as usual 

ring that we recall last time it has two operations plus and dot. So, with respect to plus 

Abelian group, with respect to multiplication it is a monoid and so on. So, I will 

abbreviate just these by A. 

 And we saw in the last lecture and as I said always we will assume always commutative, 

that mean these multiplication operation is commutative, commutative ring with identity 

and the identity is denoted by 1 or 1 which is 1 A, this will only, we will use only these 



notation when there is a chance of confusion and there are many rings under 

consideration are involved.  

And then collection of all rings that is, I will keep denoting like this, rings, rings with 

double, underline and of course, we have ring homomorphism between the two rings, 

how do you compare two rings, is a ring homomorphism, ring homomorphism between 

the two rings A and B, just a map phi such that it should respect addition.  

So, I will write abbreviately and maybe talk more because I we are assuming this but for 

the sake of completeness we are recalling, it respect plus, it respects multiplication and 

also 1 goes to 1. So phi of 1A is 1B this is also very important condition to assume, I just 

want to say one caution that some books they usually consider rings without identity and 

ring homomorphism may not map identity to identity, but we are not going to go in that 

generality because our main aim is to study rings which arise from algebraic geometry. 

And those are mainly polynomial rings and rings which are constructed from the 

polynomial rings. So, ring homomorphism defined then, this set of all rings 

homomorphism from A to B denoted by Hom, Hom is for homomorphism rings AB, this 

is the set of all ring homomorphism from the ring A to the ring B and I will just note here 

that rings with this ring homomorphism form a categories.  

So, this precisely in the due course I will make it more and more clear. So, this right now 

just it is the objects whenever you have category, there are objects and their morphism 

and this had some properties, this to satisfy some obvious property, this properties I will, 

I will recall in the due course, but in this case they are obvious. 

So objects are rings morphisms are rings homomorphism and so, what are obvious 

properties we need they are satisfied in this case, so do not worry about it. So, before that 

there is a category of sets, the category of objects are sets and morphisms are maps 

between the sets. Similarly, there will be groups and so on.  

So, category means two things, the data given is there objects and there morphism and 

this should satisfy some properties and the properties are for example, composition, 

identity map and so on. So, more and more when I need it I will keep recalling it so, that 



this definition will become more and more precise right now, you only deal with 

examples.  
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So, now, how do we know so the ring A, so this is ring, if you have seen when you 

studied linear algebra, usually the base was a field. So, field and what is the main 

advantage in the field? That it is a ring of course, but every nonzero element is inverse, 

which is not true in the case of ring because a typical example of a ring is Z, this is ring 

of integers and polynomial rings. So, fields are usually denoted by K, L etcetera, rings are 

denoted by A, B, C, R etcetera. So, this is a first example of ring also another typical 

example we will keep using it Z modulo n so this is also ring.  

This is a finite ring and finite of cardinality equal to n, this is ring in general 

commutative, the operations are addition modulo n and multiplication modulo n. So, you 

add usually and divide by an intake the remainder that is the definition of addition 

modulo n and similarly, multiplication modulo n.  

So, these rings are not fields in general but you would have studied in your first course on 

algebra, the Z mod n is a field, if and only if n is a prime number. So, we will have lots of 

examples of a field but the real obstacle, why algebra or arbitrary ring becomes more 



difficult than the linear algebra, that is algebra over field. That is because the units may 

be too few.  

So, for a general ring A I will denote A cross, these are all the elements in A such that A 

has inverse under multiplications. That means what? So, this means that is if and only 

there exist B in A, such that AB equal to 1 and also BA equal to 1. We do not have to say 

this because we are assuming the ring is commutative. So, this is obviously a group under 

multiplication, in fact it is a subgroup of the monoid A dot, this is a sub group and this 

group is, this can be too small.  

So, for example, in case of Z this is just two elements plus minus 1 and in case of Z 

modulo n it is just all those integers m in Z such that 0 less than m, less than n, and gcd of 

m and n is 1, o prime integers in between 0 and m. So, this is called a unit group of the 

rings, this group is called unit group of A, the smaller the group it is we will have 

difficulties in studying the equations so, this is about the ring.  
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Now, another last lecture we have mainly considered this rings, polynomial rings K X 1 

to Xn, polynomial ring in n variables, in this case the units are precisely the constants 

nonzero constants. So, the unit group does not change, this I will leave it for you to 

check, this is very important fact we will use it again and again. So, there are not too 



many units. So, these will follow from the fact that if I have two polynomials f and g 

degree of f time g equal to degree f plus degree g. These are if they are nonzero 

polynomials both are non zero then this, remember I just want to remind you, reminder 

degree of the zero polynomial is not defined.  

So, sometime this is also called a degree formula and this is more generally also true now 

let me recall, I am just recalling these few facts on the basic algebra one has learned, 

recall from basic algebra, when do you call and A ring and you call A is called an integral 

domain, if there are no non zero divisors. So, what is a zero divisor? That is there does 

not exist any A in a nonzero such that A times B 0 for some non zero B.  

So, such an element A if there exists such a B, B non zero and A B zero then A is called a 

zero divisors and if there is no such they will call it a…So zero divisor by definition, zero 

divisor means an element A in a such that A times B is zero for some non zero B and we 

call it as zero divisor. So the zero dividers are the most troublesome because you cannot 

cancel them.  
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So, equivalently so, element A is a nonzero divisor if and only if non zero A, if and only 

if the multiplication by A, this is a map from A to A, this map is just simply any B going 

to A times B. A is injective, this is equivalent definition. So that is an integral domain. 



The set of non zero divisors, this is a very important set as you will see in coming 

lectures, in the ring A is denoted by NZD of A this is a set of all non zero divisors in A, 

in the notation this is same thing as all the A in A such that lambda A to A is injective.  

Once A is injective A cannot be zero. So, that is a set of non zero divisors we well 

denote. Now, the next thing for example, in the examples, some examples, Z is an 

integral domain, there are no zero divisors in Z, that is obvious because in multiplication 

of two nonzero integers is again non zero is one. Also, when is Z mod n is an integral 

domain, if and only if n is a prime number if and only if Z modulo n is a field.  

That is also clear from this middle work. But we can also nicely observed that this 

observation is very useful sometimes, a finite integral domain is a field so proof, of 

course field is always an integral domain, field everybody is a unit. Therefore, units are 

nonzero divisors. So, I forgot to mention here the non zero divisors, set of non zero 

divisors contains these unit group because any unit is a nonzero divisor, that even can see 

easily from here.  

So, proof of this, so, suppose A is finite integral domain, we want to show that every 

nonzero A, to show it belongs to a unit. That is what we want to show because A field if 

and only if the unit group is the maximum one that is in case of field unit group is just 

removing zero all the units that is all the unit group. So, to show this I have to produce, so 

A B, so I have to produce so to look for B in A with A B equal to one, because we are 

commutative case always. So how do you look for B.?  

So, look at this multiplication map by A it is a map from A to A and because A is an 

integral domain, every nonzero element is a non zero divisor. Therefore, the lambda map 

is injective but then it is a finite set, the map is from finite set to finite set and then use 

Pigeon Hole principle to conclude this map is bijective. Therefore, bijective write it by 

Pigeon Hole principle.  

So, that means, this bijective means, one is here that should come from somebody. So, A 

has to go to one, but where do we go B? B goes to by definition A times B. So, we got 



one equal to A B and therefore, it is invertible. So, we have proved that finite integral 

domains are field. How do you know test somebody is a field or not?  
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For that I will introduce what are called ideals. Last time also briefly we have dealt with 

some ideals in some, in connection with the affine algebraic K sets. So, let us recall what 

are ideal. So, ideal in a ring so, start with A is a ring and a subset A, this is a gothic of A 

is called an ideal.  

If two conditions, number one A with respect to the plus either subgroup of A plus, 

subgroup and second for every A in A and x in A x in the gothic A times x this is a 

multiplication ring, this falls inside gothic and such a thing is called an ideal in the ring 

A. Ideal to be precise you could write in A and usually I will denote in this course ideals 

by the gothic letters like A, B, C etcetera P, M etcetera, initially it is difficult to draw, but 

certainly they are not as difficult as our Indian alphabets.  

So, and from the given ideals I will construct more ideals. Now, first how to give 

examples of ideals? So, some examples we should see, always every concept should be 

followed by some examples. So, let us take very well known simple what we have 

worked with the ring A equal to Z, ring of integers or let me first take arbitrary ring. So, 

let us take a arbitrary and let us take an element.  



So let A fix an element A in the ring A, A is an ring. Now, what do you do? You take all 

A multiples of this small a so, that means I am taking at all b times a, where b is varying 

in the ring A, for the obvious notation for this set I will denote A times small a. Simply 

because this b is varying. So, they are all capital A multiples of this so, this is obviously a 

subset, obviously, if I take two such elements ba and another one b prime a and add them, 

it is again of these form, this is b plus b prime a. See, you have used the distributive law 

here.  

So, therefore, this is closed under addition and also it closed under inverses because, 

additive inverse because minus of b times a equal to minus b times a. So, this is 

obviously a subgroup and the second. So, these we have checked this and second 

condition is also obvious because if I take any other c in A and any element ba in this 

multiples of a then, what c times ba? This is nothing but, I will now put a bracket like this 

c times b times a and this again have that form. So, you see, we have all the things which 

are stated in the definitions are used. So these becomes an ideal so, there are lots of ideals 

in a ring.  

(Refer Slide Time: 26:20) 

 

When does it become, this ideal A is usually called the principal ideal generated by a. 

This a is not uniquely determined by this ideal because you see a and a minus a will also 



generate the same ideal. So, A times A and A times minus A, these two ideals are same. 

So, now you specialize A equal to Z, then all in fact, we can prove stronger than this then 

every ideal in Z is principal, that is of the form Z times sum n and we may assume that n 

is actually a natural number.  

If it is negative, then you replaced by minus n and then you still get the same ideal and 

what is I advantage of this? Then this n is uniquely determined. In fact, n is the smallest 

and is the min among all multiples minus 0. So, that is and we can imitate this process for 

two elements, and three elements and finitely many elements or even arbitrary family of 

elements.  

So yesterday I did a little bit but now little do it more precisely. So this equally, this is 

example two, A is arbitrary ring and let us take, first I will take only finitely many a1…ar  

arbitrary r elements in the ring A and then I want to write all a linear combinations of this 

a1 to ar. So, that means I am considering the collection b1 a1 plus b2 a2 plus, plus, plus, 

plus br ar where b1 to br are arbitrary elements in the ring A.  

This is obviously a subset of A and what is the suggestive notation for the set is Aa1 plus 

Aa2 plus, plus, plus, plus Aar or when the ring is fix ring and there is no confusion this 

also we will write it as like this a1, a2…ar, sometimes we can write a also just to 

remember the ring. But not necessarily when the ring is fixed and when there is no 

chance of confusion.  

So, again this is obviously an ideal, you have to check this is an ideal. So, what will you 

check? You will check that this one is a subgroup under addition and it is closed under 

arbitrary multiplication by an element in a so, that I will leave it for you, just imitate what 

we did in case of one element. So, this is called ideal generated by a1 to ar in the ring a.  
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Now, let us in other words so, observe that this is very important observation and you can 

use it many times, this a1 to ar is the smallest ideal containing all these elements, a1 to ar, 

once it contain a1 to ar obviously it will contain all the linear combination and it is a 

smallest means? This is ideal so, it has to be smallest. So, in other words in the notation, 

these mean this is equal to intersection of A and these intersection running over ideal in a 

with all these a1 to ar belong to a.  

Obviously, there is at least one ideal which contain all the elements namely the capital A. 

So, this makes sense, see the problem will arise from set theory only when you have a set 

where there is the indexing cities empty set. So, that is the smallest ideal containing this. 

Now, if you have not finitely many elements but arbitrary family, so now I will write if ai 

y in i and I is an arbitrary family of elements in the ring A.  

Then obviously now the other side is very good, then the smallest ideal containing all 

these elements is called the ideal generated by a1 to ai and again we will denote it by this 

one, then this notation while multiples of these and sum, this is by definition, this is the 

smallest ideal containing all ais.    

That makes sense because there is at least one ideal which contain all of them namely the 

capital A and therefore, the smallest mix in you take the intersection, but you can also 



describe like earlier description. So, this is precisely the linear combination but now 

when you say linear combination you have to take finite linear combination.  

So, let me write precisely set of all summation bj aj where j index running in j, where j is 

the finite subset of y, j is finite and these bj’s are element in the ring A. So, look at this 

finite linear combination all of them and obviously that forms an ideal the same checking 

and then this one. So, therefore this is called ideal generated by the family ai. So, I just to 

one being a little bit more, sure when do you call an ideal to be non unit ideal? A is called 

a non unit ideal if this A is not the whole ring, then you call it a non unit ideal. So, how 

do you check? Some ideal is unit ideal or non unit ideal.  
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So, an ideal A in the ring A is a unit ideal if A equal to the whole ring A and that is 

equivalent to saying equivalently sum u belongs to A for some unit u in A, because once 

u belong, then it has the inverse and if you multiply that inverse by u then that will be one 

and then therefore, one we belong here and so it will be equal. So just check this, this is 

obvious, but I would like you to keep checking things so that things become more and 

more easier.  

So, another last observation, a ring A is a field if and only if A has exactly two ideals. 

Ones is zero, zero means, the singleton zero, this is obviously are an ideal and the unit 

ideal, these are the only two ideals because it is a field, once it is a field every nonzero 

element is a unit. So, if you have a non zero ideal it will continue unit and therefore, by 

observation it is a unit ideal.  

Conversely, there are only two ideals, any nonzero element will generate a unit ideal 

because it is a non zero ideal and therefore, if A equal to A that is equivalent to saying A 

is a unit, all these are easy things to check. So, I will leave it for you to check this thing. 

And I will stop for this half and we should continue after the break. Thank you.  

 


