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Monotone Convergence Theorem and Fatous Lemma  

So far we have seen simple functions, measurable functions, and we have defined integrals 

for positive simple functions and taking appropriate supremum we defined integrals of 

positive measurable functions. And we looked at some properties like monotonicity and 

things like that. And if you integrate over a set of measure zero, you will get zero even if the 

function is infinity at that set. And if the function is zero you integrate you will get zero, even 

if the set has infinite measure. 

So, today will prove one or two important theorems and integration, which will allow us to 

interchange the integrals and limits very easily. So this is one of the advantages of Lebasque 

theory of integration over Riemann integration. In Riemann integration we needed a sequence 

of functions to converge uniformly for us to interchange the limit and integrity. That is not 

necessary in the case of Lebesgue integral. So we will see that today. 
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So the first theorem we want to prove is Lebesgue, Lebesgue monotone convergence 

theorem. So we will call this MCT for monotone convergence theorem. Let me write this in 

full detail. So, as usual we have a triple X, F, mu. X is any space F is a sigma algebra of 

subsets of X. Mu is accountable additive measure okay. So, let FN be the sequence of non-



negative measurable functions, measurable functions defined on X such that FNs are 

increasing, that means a F1 is less than to F2, less than F3 etc.  

So, FNs actually increase, So, FN of X at each X would be an increasing sequence of positive 

numbers so, they will have to converge, they may go to infinity but they will, they will 

converge to something. So, let us call the limiting function F. So, let F of X to be equal to 

limit and going to infinity FN of X for every X in X. So this of course exists, because if FNs 

are increasing, and then F is of course measurable, then f is measurable, it is a limit of 

measurable function.  

So, that is not surprising, but what is interesting is, is that we have a limit of N going to 

infinity, integral of X, FN, D mu. So, remember, these are all well-defined now, because FNs 

are non-negative measurable functions, we know how to define the integral of FN which 

respect to a measure, this is actually equal to integral of X, F, D mu.  

So, to remark, we are interchanging limits and integrations okay. So this is interchanging 

limit and integration right, because we are saying limit of N going to infinity integral over X 

FN D mu, this is actually equal to integral over X limit and going to infinity FN. So, that is 

our F, right and d mu. So we are saying this can be done, if you have a sequence of increasing 

measurable functions okay, non-negative increasing measurable functions. 
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So proof, so, this is one of the most useful theorems you will see in measure theory, we have 

three such theorems which will allow us to interchange limits and integration we will see one 



more today and then when we define integration for real valued and complex valued 

functions, the next the third term will come okay. So, let us define again F of X to be equal to 

limit and going to infinity F and X right. So this is for every X and X. So then F is 

measurable. 

Then F is measurable, because it is the limit of measurable functions, limit of measurable 

functions,  is measurable okay. We want to compute the integral of F and see if it is the limit 

of integral of FX, okay? Now what do we know? We know that FNs are increasing, so FN is 

less than or equal to FN plus 1 less than or equal FN plus 2, etc. 

Because of the monotonicity property of the integral, we have integral over X, FN, D mu is 

less than or equal to integral over X, FN plus 1 D mu. So, if you look at the sequence of 

positive numbers. So remember FNs are non-negative measurable functions. And I am 

integrating over X with respect to a positive measure. So I am getting these are all positive 

numbers, positive numbers.  

Sometimes they can be infinity. But let us not worry too much about it, we have a sequence 

of positive numbers, let us call AN. What we know is AN is less than to AN plus 1. So AN is 

an increasing sequence of positive real numbers. So it will converge, it may go to infinity, or 

some finite number, let us say A. Now, what do we know? We have, we also have, we also 

have FN to be less than or equal to F for every N, right? Because F is the limit of the increase 

in sequence of FN.  

So for each N, FN is less than or equal N, and so integral of X FN, D mu will also be less 

than or equal to integral of X, F D mu for every N. But this is a sequence which converges to 

A. So, A is less than or equal to integral of X, F D mu. So, this is one inequality right. So, 

what we have? We are proving is that limit of N going to infinity integral over X FN, D mu 

that is my A that is less than or equal to integral over X, F D mu. 

Okay this much did not use anything too difficult only, only thing we needed was the 

monotonicity of the integral and the fact that these numbers ANs were increasing and so, we 

got AN increasing to A okay.  
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So, now, let us prove the other way. Suppose zero less than to S less than to F and S is a 

simple function. So recall that we defined integral of F. So that is something, let us recall 

immediately, they call integral of non-negative function, F is the supremum over all the 

simple functions less than or equal to F integral of X, SD, right. So SD mu is something 

which we know, we know how to define this, using the measure and the expression for S, and 

we take supremum over says things, we get integral of F.  

So, I am going to use that now. So, take any single function which is between zero and F. Let 

us fix a number. C less than, strictly less than one, strictly less than one, okay. And define, 

define the following set EN, this is equal to all those points in the space X, such that FNX is 

greater than or equal to C times S of X.  



So, remember S is a simple function less than or equal to F, C is something which is less than 

or equal to one. So C times S is something strictly less than F, and I am looking at all those X 

such that FNX will be greater than or equal to C times S of X. So, it is easy to see, you see to 

see that EN increases to the whole space X. Well, why is that? So let us Let us justify this. If I 

take any X in X, I know that FNX increases to F of X, right for at each X, we know this 

happens.  

But if I look at C times S of X, this I know is strictly less than F of X. So, there X is some N 

naught such that C times S of X will be less than or equal to FN naught of X less than or 

equal to F of X right. Because the FNs converts to F. So, it has to be between this number and 

this number as and then becomes bigger and bigger and so, that particular X will be in EN. 

And so well because FNs are increasing ENs are increasing. So, this simply tells me that UN 

of EN is the whole space in equal to 1 to infinity. Moreover, it increases right, so UN is 

smaller than E2, smaller than E3 and so, okay.   

So, well, how do we use this? We start with integral over X, FN D mu number, these are 

positive numbers increasing we know it converges. We need to show that actually converges 

to integral of F. Well, this is of course less than or equal to, sorry greater than or equal to 

integral over EN, FN D mu, we call that integral over EN, FN D mu is integral over the 

whole space X indicator of EN times F.  

So, let us, let us recall that part right, integral over EN, FN D mu. We know by definition this 

is integral over X, indicator of EN, FN D mu, which is of course, less than or equal to integral 

over X, FN, D mu right. Because Chi, Chi EN is less than or equal to one. So, I can by 

monotonicity of the integral I can do so, we get this right. This is of course, greater than or 

equal to. 

Well on EN, we have and inequality, right? So we can use that using monotonicity of the 

integral again, we get the constancy that will come out of the integral, integral over EN as D 

mu right. Because S, C times S is smaller than FN on the set EN. So we use the monotonicity 

of the integral again there okay.  
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So now we are in good shape because the right hand side now. Well, what will happen to this 

so let us, let us write down those again? I have integral over X, FN D mu to be greater than or 

equal to C times integral over EN, S, D mu okay. So let us recall the result we proved in the 

last class. So we proved that if S is non-negative and simple. Then if I define U of A to be 

equal to integral in over A has D mu, then mu is a measure, we prove that okay. So this is a 

measure and ENs increased to the whole space, ENs increased to whole space okay.  

So mu of EN, we know by the property of the measure will have to increase to mu of X. So 

this increases as N goes to infinity to C times integral over X, S, D. But for each and I know 

this is bounded by integral over X, FN D mu, right? So this is of course, less than or equal to 



sorry, let us put this. So, I know that this, this goes to our number A right. This is what we 

call A. let us see if it is here, yes. So, the A is simply the limit of these integrals.  
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So, this goes to A. So, what we have is A greater than or equal to C times. So, let us, lets 

write that separately, so, that it is clear. So, let us recall A. A is simply limit of N going to 

infinity integral X, FN D mu, what we have just proved is that A is greater than or equal to C 

times integral over X, S D mu. So, what was C? C was less than one some fixed constant, 

what was S? S was less than or equal to F.  

So, this is true for all C and all S like this right, any C between zero and one any S between 

zero and F, we have this inequality. Left hand side is independent of everything. So, I can 

take supremum over C and supremum over S less than or equal to F and I will on the right 

hand side I will get the integral of F. So, this implies that A which is the limit of FNs. FN D 

mu. I know is greater than or equal to integral over X, F D mu right.  

So, this is one inequality and the other way inequality was the easy part which we did right, 

which uses only the monotonicity. So, we had this inequality. So, limit of FNs to be less than 

or equal to integral of F, and now we have limit of FNs to be greater than or equal to limit. 

So, this tells me that limit of N going to infinity X FN D mu is actually equal to integral of X, 

F D mu okay.  

So, this is the monotone convergence there, if you have increasing sequence of measurable 

functions. Then you have convergence in the integral okay that is what monotone 

convergence theorem tells you, but you have seen. So, let me remark, you have already seen 

an instance of this when we started with a measure, so, we call. Suppose I have a measure mu 

and if I have sequence of measurable sets A1 smaller than A2 contained in A3 etc right.  



So, this is what we call AN increasing an increases to A. What is A? That is the union AJ, J 

equal to infinity. In this case, you know that mu of AN increases to mu of A. This was a 

property, countable additivity property of mu. Well now, this is part of the monotone 

convergence theorem because what is mu AN, we are looking at Chi A, AN. I know AN 

increases to A. So Chi AN will increase to Chi A. 

And by MCT, the monotone convergence theorem, we know that integral of Chi AN, D mu 

will increase to integral over Chi A, D mu right, over the whole space X which is say I am 

saying mu of AN increases to mu of A. So, you have seen an instance of the monotone 

convergence theorem for indicator functions okay. So, this is a much more general theorem, 

which is applicable to all positive measurable functions.  
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So, there are immediate corollaries to this, which are very useful and you will also see 

something which you have probably seen earlier. So, corollary. So, again, we have this triple 

and let us say we have a sequence of measurable functions to infinity measurable okay. 

Define F of X equal to summation FN of X in equal to infinity. So I am adding positive 

numbers, so it will exist it may be finite or it may be infinite okay.  

Then F is measurable and the more important part is integral of F, D mu is the sum of 

integrals of FNs okay. So let us corollary one, let us prove this. So, positive part is important 

otherwise, there are things that can go wrong, one has to be careful about convergence and 

so. Well, so how does one prove this?  



So let us start with the simpler case. Suppose I have two functions, suppose F1, F2 non-

negative measurable functions, negative measurable functions. Then I know that there are 

sequence of, so there X is sequence of non-negative, non-negative simple functions. So, we 

will call them SJ1 and SJ2 okay. SJ1 will convert F1, SJ2 converges to F2. So, we know this 

for any non-negative measurable function, I know there is a sequence of simple functions 

increasing to that function.  

But now by monotone convergence theorem, I know that integral of SJ1 D mu will increase 

to integral over F1 D mu and integral of SJ2 D mu, the second sequence will converge to the 

second function. So, we know this by MCT okay. But for simple functions we already know 

linearity. So, remember that, so, we proved that, so let us recall that if S and T are simple. 

Then we know that integral of S plus T, D mu equal to integral over X, S, D mu plus integral 

over X, T, D mu, we did this in the last class for simple functions. So we use that.  

So if I look at integral over X, SJ1 plus SJ2 D mu. I know that this is equal to integral over X 

SJ1 D mu plus integral over X SJ2 D mu. So we can use monotone convergence theorem 

again. 
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Right? Because SJ1 plus SJ2 will increase to F1 plus F2. So by MCT, we have integral over 

X SJ1 plus integral over sorry, SJ2 D mu will increase to integral over X, F1 plus F2, this is 

by MCT. But I know that this is equal to because it is linear on simple functions. This is 

simply the sum of two things plus integral over X SJ2 D mu. And I know that this increases 

to integral over X, F1, D mu plus integral over X, F2 D mu. 

So, remember we started this also converges to this. So, we have what we have proved is that 

linearity of integral over positive function. So, whenever you have positive functions 

measurable, you can add them up. So, of course, if you have two, three functions of, you will 

get three pieces and so on right. Finitely many functions you can always do this.  

So, now, let us get back to the proof of, proof of this. So, we are looking at countably many 

simple, measurable positive measurable functions. We are, we are looking at F of X equal to 



the sum of these things and we want to say we want to prove this right, this is what we want 

okay. So, we use monotone convergence theorem again okay. 
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So, we use monotone convergence theorem again okay? So recall we have F1, F2, F3, etc 

right? This is what we call F. So let us take the partial sums, so let us call that GN. GN of X 

to be F1X plus F2X plus F3X plus etc, etc plus FNX right. Then what we know is FJs are all 

positive. So GNs are increasing right? Where will they increase to? They will increase to the 

whole sum which is F. So GNs increased to F. So, by MCT, we will have integral of GN D 

mu will increase to integral over X, F, D mu.  



But what is this GN is finite sum, we just proved that if I have two functions, I know how to 

the linearity of the integral or two functions we know. So, similarly, for finite, finite sum we 

have the same result. So, this one would be simply summation J equal to one to capital N 

integral over X, FJ, D mu right. But as N goes to infinity what will happen to this? So, as N 

goes to infinity this goes to the sum J equal to one to infinity integral over X, FJD right.  

So, this and this will have to be same. So, that is what precisely or statement of the proof, 

statement of the theorem right. If I have F to be the sum of FNs, then the integral of F is the 

sum of the integral of FNs, right. Remember, they are all positive measurable functions when 

you apply monotone convergence theorem, you have to be careful, you apply it to increasing 

sequence of functions. 
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Okay, so, let us look at another corollary. This is something which you have probably seen 

when you studied series of a positive numbers and so on. Suppose I have numbers AIJ 

positive I equal to 1, 2, 3 etc. similarly, J equal to 1, 2, 3 etc. okay. Then summation AIJ, J 

equal to one to infinity, summation I equal to one to infinity, this is the same as summation J 

equals one to infinity, summation I equal to one to infinity AIJ.  

So, remember we are changing the order of the summation, changing the order of the 

summation right. So, whenever AIJ are positive, you can do that. So, that is an easy 

consequence of the monotone convergence theorem. So, I will leave it as an exercise to you. 

Well, how do you see this? So, this is remember summation is an integral right and we just 

proved that if I add up functions I can change summation and integrals, right that is what we 

proved? So, use this use this result, use this result and make sure that you are integral over X 

is the summation.  

So, remember the, if you look at natural numbers with counting measure, then each of those 

can be viewed as an integral. And so, you have one summation and an integral and you know 

how to interchange them using monotone converges. So, use corollary one okay and MCT. 
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Okay, so the first part we will stop with the following lemma, which is another important 

result, it is called Fatous lemma. So, as usual, we have X, F, mu, and I have FN. Again, 

positive measurable functions, measurable okay. Then integral over X lim inf of FN, D mu, 

this is less than or equal to lim inf of integral FN, D mu okay.  

So remember these are number and I am taking the lim inf, here it is the function lim inf FN. 

So let us recall that lim inf FN at X is well, it is supremum over N infimum over K greater 

than or equal to N, FKX okay. So, the proof of this is two lines from using MCT. So, all we 

do is, we look at this as a collection of functions for each N. So, define GN of X to be 

infimum over K greater than or equal to N. So, for each N, you fix N and look at all K greater 

than or equal to N and look at FKX right, take the infimum of that. These are positive ones. 

So, you will have an infimum which may be zero does not matter, but you will have an 

infimum. 

Now you are looking at infimum of various things. And as N increases the set you are 

looking at us various smaller and smaller. So the infimum will increase, so GN are 

measurable of course, it goes supremum and infimum of measurable functions are 

measurable and GNs are increasing, GN are increasing. So it will convert, where does it 

convert to the? GN increases to supremum of GNs right, because GNs are increasing, but 

supremum of GN is precisely the lim inf of FN.  

So GN increases to lim inf for FN. So, by MCT, the monotone convergence theorem, integral 

over X, GN D mu will converge to integral over X lim inf of FN, okay.  
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So, let us use one inequality here. So, let us recall them GN, so remember GN was GN of X 

is infimum of K greater than or equal to N FKX. And so this is of course less than or equal to 

FNX right? Because I am looking at, so what is this is infimum of FN, FNX, FN plus 1X, FN 

plus 2X etc. So, FNX is one such element and so infimum will be less than or equal to that. 
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So this tells me again by monotonicity of the integral, I have integral over X GN and D mu to 

be less than or equal to integral over X FN D mu, I know that this converges to integral over 

X lim inf of FN D mu and so of course, I can say this is less than or equal to the lim inf of 

integral over X FN D mu right. These are so what am I using? If I have a sequence AN and 

so, this is a simple exercise AN and BN positive, positive sequences okay. I know that AN 



converges to A or AN increases to A. AN increases to A and AN is less than to BN okay. So 

this implies A is less than to lim of BN okay that is all we are using here.  

So, this is called Fatous lemma. So Fatous lemma is an inequality. It is called Fatous in 

lemma, integral lim inf is less than or equal to lim inf of integral, this is another extremely 

useful result so. So you have just seen two results were interchanging of the integral and 

limits are in the changing of the limits and integrals are involved. First is the monotone 

convergence theorem, which allows you to interchange the limit and integrals, if you have a 

sequence of increasing measurable functions, okay. If you have a sequence of positive 

measurable functions, you have an inequality which is given by Fatous lemma okay. 

So, so far we have seen monotone convergence theorem and Fatous lemma, which allows us 

to interchange integrals and limits in the. In the next session, we will look at complex valued 

functions and how to integrate them. So, far we have integrated only positive functions, 

starting from positive symbol functions, we have gone to positive functions, we know the 

integral is linear there. Now, we will extend it to real valued functions, and then to complex 

valued functions and then one more result of this kind which will allow us to interact limits 

and integrals will be put. 


