
Measure Theory 

Professor E.K. Narayanan  

Department of Mathematics 

Indian Institute of Science, Bengaluru  

Lecture 54 

Consequences of Radon-Nikodym Theorem-2 

 

Okay, let us start. So in the last lecture, we saw a simple application of the Radon-Nikodym 

Theorem, which gave us polar representations for complex measures. So we will continue 

along these lines, we will see some more applications of the Radon-Nikodym theorem so let 

us start. 
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So, let me state this as a theorem. So, as usual we have a space x, f okay. Since well, will 

assume that it is a positive measure, suppose Mu is a positive measure okay. And let us say g 

belongs to L 1 mu, g can be complex value. So define, so we are going to define another 

measure, we have seen this before, lambda of E to be integral over E g d Mu, then ofcourse, 

lambda is a complex measure right, 

Then lambda is a complex measure, this we have seen before. So, the assertion is that mod 

lambda of E equal to integral over E mod g d Mu. So the lambda is given by g, mod lambda 

is given by mod g, so this is sort of, you can write it like this d lambda is equal to g d Mu 

right, that is the given condition, then the mod d mod lambda is mod g times d Mu, so Mu is a 

positive measure, of course. 

So that is simply taking the modulus on both sides, so symbolically, that looks sort of very 

nice. But this requires a proof because mod lambda is defined to be the total variation. So, 

you take a measurable partition and then add up things and take the supremum, right. So, how 

do we know that we are getting mod g? So that is where the previous theorem will be very 

useful.  

So, let us write the theorem proof, so first of all there exists h such that mod h equal to 1 

right, and E lambda is equal to h times d mod lambda because lambda is a complex measure, 

we can do this okay. But d lambda we know is equal to g d Mu, so that is what is given to us. 



So, in symbolic form d lambda is equal to g d Mu which is same as saying lambda of E is 

integral over E g d Mu. 

Which ofcourse d lambda is given by h times d mod lambda. So, you multiply by, so we have 

a equality, so multiply by h bar on both sides, so this does not make sense actually but I will 

explain what this means. So, this is a symbolic calculation, so let us say symbolic calculation 

which has to be justified, so this is only to motivate what happens here. 

So if you multiply by h bar on both sides, so let us take this one first, I multiply by h bar, so I 

will have h bar h d mod lambda, h bar into h is mod h square, but mod h is 1 right, so d mod 

lambda, so this is d mod lambda. So, on this side you get d mod Lambda, on this side you 

will get g times h bar.  

So we are going to get d mod lambda equal to g h bar d Mu that is what we should be getting 

if you multiply by h bar on both sides, but this has to be justified right, because on some 

symbols we just multiply. So let us try to understand this. Why is this true?  
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Okay, so let us take some space here. So what do we know? We know that integral over E g d 

Mu equal to integral over E h d mod lambda because this is lambda of E, lambda of E. Okay 

let us write this in slightly better form, lambda of E equal to g so that we know right, because 

that is the equality here.  

So write it in a slightly better form, so I have integral over x Chi E times g d Mu equal to 

integral over x Chi E times h d mod. So, from Chi E we can go to simple functions. So from 

here we go to simple functions. So from Chi E go to simple functions, and so what do we 

get? So we will get integral over x s g d Mu equal to integral over x s h d mod as simple 

function okay, because that is just a linear combination of Chi.  

Now you take, so just be careful here, so take f to be a bounded function, then I know there 

are simple functions converging to f uniformly if you like for bounded measurable functions 

we always have. Then you can apply DCT to it, so we have this equality for each s n, right so 

you can look at s n. Now we are dealing with finite measures and g, d Mu is in L 1, so maybe 

let us write this clearly. 

So let us look at x s n g d Mu, where is g? G is in L 1, L1 Mu, s n converges to f, f is a 

bounded function. So this is uniformly, this converges uniformly. So, s n times g in modulus 

is less than or equal to s n are all bounded, f is bounded, so we will have some constant times 

mod g, but this is an L 1 function, so I can apply DCT, So apply DCT I will get integral over 

x, f, g d Mu.  

Similarly on the right hand side, so this is equal to I will get x f h d mod value to why this 

converges? So, again apply appropriate DCT. So this is true at least for f bounded okay. Now 



you will have to do is to change f to f times h bar, right, mod h is 1, so h bar is a bounded 

function, so you will get what you want. So, well what do you get? You will get that so let 

me write it down as one more line. 

So we will have integral, so change f to, okay let me see the thing, okay. So we want to show 

that d mod lambda is equal to g h bar d Mu, so if change f to f dot h bar, so, I will have f h bar 

g d Mu equal to, h bar into h is 1 so, I will have f d Mu at least for f bounded. So f bounded 

so I can take f to be Chi right, take f to be Chi E, well, what do you get then?  

Then you get integral over E h bar g d Mu is equal to integral over E d mod Mu. So, this is 

what is symbolically written as h bar g d Mu equal to d mod Mu, that is what I meant by 

multiplying by h bar on both sides. And this is what we wanted to prove right. Okay so I 

mixed up my Mu and Lambda, so let us be careful here so, we are starting with g d Mu equal 

to h d mod lambda.  

So everywhere you have to change to d mod lambda okay so, anyway there is no mistake in 

the proof, it is just that instead of writing Mu I wrote Lambda, so instead of writing Lambda I 

wrote Mu. So, anyway you can correct this, so there is no mistake in the proof. 
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So multiplying by h bar we obtained d mod Lambda equal to g h bar d mod Mu this is what 

we get. Hence 0 less than or equal to integral over E mod d lambda, for this is measure of E 

with respect to mod Lambda, this is equal to well, whatever we have just proved, we use this.  

So integral over E g h bar d mod Mu, very nice, but what are we saying? We are saying that 

this is positive right or greater than or equal to 0 which means if Mod Mu of E is positive 

then 1 by mod Mu of E integral over E g h bar d mod Mu, this is positive, which means the 

averages are positive. 

You can use that or simply look at the integrals, I think that is easier because we are not 

assuming anything about Mu. So, simply look at that integrals, integrals are positive so what I 

want to say is we can leave it, think of this as an exercise, if I have s in L 1, L1 of Mu, Mu is 

a positive measure, I am not assuming sigma finite measure anything, it just a positive 



measure and if integral over e f d Mu is positive or non-negative for every E in the sigma 

algebra, then consider this as an easy exercise then f itself is greater than equal to 0 almost 

everywhere. 

For example, f can be complex valued, but if you write f as real plus i times the imaginary 

part, the imaginary part is integral 0, all the integral 0 so it will have to be 0 and so f is real 

valued and all the integrals over subsets of X are also positive so f will have to be positive, so 

that is an easy assertion.  

And what we have got is that g h bar has the same property that it is positive, okay. In this 

case, you can use, why do I keep writing mod Mu? Mu is positive, so I can write just Mu, so 

say making silly mistakes. So this is a positive measure and I have a function whose integrals 

are positive. 

So this ofcourse tells me that g h bar is greater than equal to 0 almost everywhere and you 

can redefine it. But if it is greater than or equal to 0, it will be equal to its modulus. But h has 

modulus 1, so you get mod g. So the Radon–Nikodym derivative here is actually mod g that 

is all we want, right, so let us go back. Since I made some silly errors, we are trying to prove 

that the Radon–Nikodym derivative of mod Lambda is mod g is the Radon–Nikodym 

derivative of Lambda is g. Finally that is what we have got. 

If you look at the mod Lambda of E, Radon–Nikodym derivative is g h bar, but g h bar is 

positive so it is equal to its modulus and so it is mod h so, that proves the theorem. 
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There are other consequences, so let us do one more of that, this is called the Hahn 

decomposition or Jordan Hahn decomposition. So, we saw something very similar earlier but 

we are trying to deduce it from the Radon–Nikodym theorem. So, Mu be a real measure so 

now I am not assuming it is complex valued, it is real valued in our nomenclature, it is a sign 

measure on some space of course x, f.  

Then there exists sets A and V in script f such that the space X is A union B, and A and B are 

disjoint okay and the positive and negative variations of Mu so, what are they? They are 

denoted by Mu plus and Mu minus, so we had defined this remember, they satisfy Mu plus of 

E is Mu of A intersection E so, remember A is this we have A and B which are complements 

to each other, disjoint sets.  

And Mu minus is Mu of B intersection that is why they are mutually singular. So, Mu plus is 

mutually singular to Mu minus and Mu is Mu plus minus Mu minus, remember this was very 

similar to the positive and negative part of the functions and mod Mu was the sum of them. 

So, that is how we had defined this. 

Well, let us prove this. So, let me draw some picture here, so this the Space X gets divided 

into two parts. So, I will have A here, I will have B here and Mu plus is something which is 

concentrated here. So, this gives me Mu plus and whatever is here gives me Mu minus, so 

this portion gives me Mu minus. It is the restriction of Mu to A, which gives me the positive 

part, restriction of Mu to B gives me the negative part.  



So, let us prove this so proof, so we know d Mu equal to h d mod Mu, Mu is a real measure 

so, mod Mu is a finite measure and h has the property that mod h equal to 1 for every x. So 

now Mu is real so, when I integrate over any set, I am going to get a real number and so 

averages of h are real so implies h is real.  

So, Mu real implies h is real so, you can use the averages result if you want, averages of h 

belong to the real. And r is closed in the complex plane, so the closed set you take to be the 

real and you have a function whose averages are inside real numbers, so the function itself 

will be real, almost everywhere of course you can redefine it so, that it is real so real almost 

everywhere but mod h equal to 1 mean h is real. 
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So, the only real numbers whose mod h is 1 is plus or minus 1, implies h equal to plus or 

minus 1 real almost everywhere. So, we can we can redefine it so, this is the usual thing, we 

redefine h so that h of x is either 1 or minus 1. So that requires only redefining it on a set of 

measures 0, so on that set of measures, you define it to be 1 that will do.  

Alright, so now it is clear what you should do, so the Radon–Nikodym derivative is positive 

on a set and negative on a set. So, the positive part should be given by the set where the 

Radon–Nikodym derivative is positive. So define to what remains is easy to see, define A to 

be the set where the Radon–Nikodym derivative is positive, but it is 1 of course, and B to be 

the set where it is negative and checks equal to minus 1. 

So, all the properties of A and B are true right. So, A union B is the whole space because h 

either 1 or minus 1, and A intersection B is empty, so that is true. So, I need to look at what 



happens to Mu plus and Mu minus. So, remember Mu plus is mod Mu plus Mu divided by 2, 

and nu minus is mod Mu minus Mu divided by 2.  

So let us let us look at Mu plus, so since Mu plus is equal to half mod Mu plus Mu, so how 

will I write Mu plus of E? So, Mu plus of any set E is ofcourse half times mod Mu of E plus 

Mu of E so, this is the C part. 
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Which is equal to half times integral over e d mod Mu plus integral over e. Remember Mu is 

always equal to h times d mod Mu so I am sifting everything d mod Mu. So h times d mod 

Mu, which is equal to so half integral over E, well it is just 1 plus h d mod Mu. So what 

happens to 1 plus h?  

Well 1 plus h is h takes either 0 or 1, either 1 or minus 1. So h of x is either 1 or minus 1, so 

this is for x in A, x in B. So 1 plus h will be 0 for x in B, so I can write this as integral over E 

intersection A. So integral over E intersection A and integral over E intersection B, so that 

will give me integral over A. But what happens to 1 plus h by 2? So 1 plus h by 2 equal to 1 

equal to h on A, right.  

So whenever I have subset of A, 1 plus h by 2 is h so I will write it as h. It is 1 but I will write 

it as h d mod Mu because I want Mu to come. And here it is 0 d mod Mu, it does not matter 

what measure we have there. So this is simply h d mod Mu is Mu, so this is d Mu, so this is d 

Mu, so this is Mu of E intersection. So I wrote everything in detail so that it is clear what is 

happening.  



So we started with Mu plus of E, and we ended up with Mu of E intersection A which is 

precisely what we wanted to prove. So the restriction of Mu to A will give me Mu plus, and 

similarly Mu minus. If I look at Mu minus, instead of the plus I will have minuses, and I have 

1 minus h by 2 and 1 minus h by 2 equal to 1 equal to h or minus h on B so, that is always 

needed there and you will have this. So, that proves the, this is called the Hahn 

decomposition. 

And since Mu plus and Mu minus are sort of unique, you know the sets A and B are unique 

up to sets of measure 0. Of course, you can add, you can take something from B which is of 

measure 0 and add to A, it will not change anything. 
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Okay so, we have a immediate corollary to this which gives a property of Mu plus and Mu 

minus. So if Mu equal to Lambda 1 minus Lambda 2 so, Lambda 1 and Lambda 2 are 

positive finite measures. So, if Mu is real, then I know how to write Mu as Mu plus minus 

Mu minus, where Mu plus and Mu minus are positive finite measure, this is an arbitrary 

collection, okay Lambda 1 and Lambda 2.  

Then Lambda 1 is greater than or equal to Mu plus and Lambda 2 is greater than or equal to 

Mu minus, so these are the smallest positive finite measures you can get. So if you have seen 

functions of bounded variation and so on, you know how to write this as a difference of two 

increasing functions and things like that. 

So, there you see total variation of the bounded variation function and so on. So, it is very 

similar to that, so the minimal property of Mu plus and Mu minus, in fact it is related to that. 



We will see that, when we will study absolutely continuous functions we will see that. But 

prove of this is 1 line, so both Mu plus and minus have a minimal property. So, since Mu is 

less than or equal to Lambda 1, why is Mu less than or equal to Lambda 1 because Mu is 

equal to Lambda 1 minus Lambda 2 which is a positive measure. 

So, I am subtracting something positive so Mu will be less than or equal to Lambda 1. So Mu 

plus of E equal to Mu of E intersection A, A is my set which we defined earlier where the 

Radon–Nikodym derivative is 1, this of course is less than or equal to Lambda 1 of E 

intersection A because Mu is less than or equal to Lambda 1 which is of course less than or 

equal to Lambda 1. So Mu plus is less than or equal to Lambda 1 so, that is the first thing 

similarly, second assertion can be proved so I will leave it to you 

So, this is a good place to stop. So, we saw two consequences of the Radon–Nikodym 

theorem. One is the polar representation for a measure, well in fact three applications, polar 

representations. And if I have a measure defined by an integral, then integral of g let us say 

then mod g will be the Radon–Nikodym derivative for the corresponding total variation 

measure, and we have seen the Hahn decomposition. So well, we will continue with this, we 

will continue studying complex measures. 

Our next aim is to look at the continuous linear functional on L P, so If you go back to the 

proof of the Radon–Nikodym theorem, we use the fact that any continuous linear functional 

on L 2 is given by an inner product. So, inner product here would mean simply you are 

integrating against another L 2 function.  

Now, 2 and 2 are conjugate exponents because 1 by 2 plus 1 by 2 equal to 1, and when we go 

to L P, we will be integrating against an L Q function, where Q is the conjugate exponent of 

P 1 by P plus 1 by Q equal to 1 and that will characterize the continuous linear functional on 

L P So, that is what we will do in the coming lectures. Okay, so, we will stop here. 

 


