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Properties of countably additive measures 

So what we have proved so far is that if I have a positive measurable function I have a increasing 

sequence of simple functions converging to that function at all points, so now our aim would be 

to define integration of positive functions first but before that will look at some properties of a 

countably additive measure. 
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So let us recall that, so I have this space X and the sigma algebra F, so Mu was a measure as a 

countably additive measure so recall that Mu of union A j, j equal to 1 to infinity equal to 

summation Mu of A j, j equal to 1 to infinity if A j are disjoint okay so this is the countable 

additive measure okay. If you have such a measure there are certain properties of Mu which we 

require, so let me write as a theorem, okay. 

Mu of union A j, j equal to 1 to n so now I am only taking finite union so that is the sum of Mu 

of A j, j equal to 1 to n if A j are disjoint, so even for finite disjoint union we have so that is not 

surprising because we know that for infinite it is true if A is contained B then Mu of A is less 

than to Mu of B, so this is called monotonicity, so ofcourse the sets A and B are all in the sigma 

algebra otherwise Mu of that is define, remember the Mu is defined in the sigma algebra F. 



So the sets wherever we write Mu of A it is assumed that set A is in script F, if A ns are 

increasing so let us say A ns are measure sets and A ns are increasing so A1 is contained in A2 

contained in A3 etc. okay, so they will converge to some set A right and A is the union A j, j 

equal to 1 to n, 1 to infinity then Mu of A n, so Mu of An are positive numbers right that will 

increase to Mu of A, okay. So in other words if A n increases to A then Mu of A n increases to 

Mu of A, so let us prove that, okay. 
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So proof, okay, so in the first one we have A1, A2 etc A n disjoint right disjoint I can take An 

plus 1, A n plus 2 etc. all to be equal to empty set. So I have now infinity, right. so I know that 

they are all disjoint, so in know that Mu of A j, j equal to 1 to infinity is equal to some of Mu of 

A j, j equal to 1 to infinity by a countable additivity property of the measure. But Mu of A j is 0 

if j is greater than or equal to n plus 1. 

Because they are all empty sets, so here in the left hand side I will have only union up to n 

because n plus 1 onwards they are empty sets so it does not add anything to it and here when I 

look at the summation, summation j equal to 1 to n I will have Mu of A j some numbers but then 

whatever remaining is 0 because of this, right because they are empty sets, so this is called the 

finite additivity. 

So countable additivity implies finite additivity that is a ofcourse true, for the second one I have 

A and B so set A is contained in B, so B is bigger so it should have bigger measure right that is 



what we want to prove. So let us see, so Mu of B I can write as Mu of B minus A union A right, 

so let us say this is B and some set A is inside right, so A is contained in B. So I am writing B as 

B minus A, so this is the part B minus A and A. 

So this is the disjoint union and so it will add up right, the measure will add up, so this is simply 

B Mu of B minus A plus Mu of A but Mu of A is something which is positive, sorry Mu of B 

minus A is something which is positive. So this tells me that this is greater than or equal to Mu 

of A okay that is called the monotonicity property. 

Now third property, so third property is very important, this is important, so if A n (converge) so 

this is essentially equivalent to we can write another property for decreasing sequences and they 

are equivalent to Mu being countably additive, so I will explain that after the proof of this, so let 

us look at three, okay. 
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So what I have is A n increasing to A, well what does that mean? That means I have the sets A1 

which is smaller than A2 smaller than A3 and so on and some of them may be equal and A is 

simply the largest one, right so that is simply the union of all them that is the limit of A, and I 

want to say that Mu of A n converges to Mu of A, so let us draw some pictures, so let us say this 

is A1 okay this is A2, this is A3, A3 is bigger than that A4 is much bigger than that and so on, 

okay. 

So these sets are not disjoint but I can disjointify them, how do I do that? I look at A1 then I look 

at whatever is in between then whatever is in between here, whatever is in between here and so 

on, right. So I can write A which I know is A1 union A2 union A3 union A4 union etc - etc I can 



write this as A1 so that is the first one here, union whatever is in A2 and not in A1, so I look at 

A2 minus A1, okay. 

Then I can write union A3, so whatever is A3 but not in A2, okay etc - etc, so union A j plus 1 

minus A j union dot-dot-dot, well what is the advantage of this? This would be a disjoint union, 

okay and so when I look at Mu of A this would be because this is disjoint and Mu is a countably 

additive measure it will add up Mu f of A1 plus Mu of A2 minus A1 plus Mu of A3 minus A2 

plus etc-etc. 

Now if any of them is infinite, if any so let us make a reduction so if Mu of A k is infinity for 

some k then mu of A is greater than or equal to Mu of A k because A is the union of A js and so 

this will also imply that Mu of A is infinity. And so the both sides will be same okay, so we can 

assume that Mu of A j is finite for every j then what is Mu of A j plus 1 minus A j? Well this 

would be equal to Mu of A j plus 1 minus Mu of A j right, we did this earlier so let me remind 

you of that. 

So we wrote Mu of B equal to Mu of B minus A plus Mu of A if this and this are finite then I can 

take Mu A to this side, so I will get Mu of B minus A to be equal to Mu B minus Mu A, so that is 

why we have this. Now if you plug it in this would be Mu of A equal to Mu of A1 plus well what 

happens to Mu of A 2 minus Mu A1, so this is Mu of A2 minus Mu A1 plus well this becomes 

Mu of A3 minus Mu of A2 plus dot-dot-dot. So notice that this cancels with this, this cancels 

with this, etc-etc which is same as limit of Mu A n and that is what we wanted to prove okay, so 

let us stop with the corollary.  
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A similar proof corollary, suppose A n are decreasing to A what does that mean? A1, A1 is the 

bigger set, A 2 is smaller than A1, A3 is smaller than A2 and so on, right it is decreasing, so 

what will be A? Then A equal to intersection A n right, n equal to 1 to n that is the limit of A n 

okay. If Mu of A1 is finite so that is important then Mu of A n the limit is actually Mu of A, so A 

n decreases to A then Mu of A n decreases to Mu of A. 

So if we write this again, Mu of A n decreases to Mu of A but you need the extra condition that 

Mu of A1 is finite otherwise it is not true okay, so let us prove this. So it is easy to deduce it 

from the earlier result, so Ai s are decreasing to you look at A1 minus A j, so let us call that B j 

okay. So because that A j is decreasing to A okay so A1 minus A j will increase to A1 minus A 

okay, so check this, this is very easy. 

If I have a decreasing sequence of sets, if you look at compliments that will have to be 

increasing, right that is all we are using. So B j is a collection of sets so remember B j are also in 

the sigma algebra right because A1, A j they are all in the sigma algebra so B j are also 

measureable j s, as it increases to A1 minus A, so by the previous theorem we have Mu of B j 

increases to Mu of the limit which is A 1 minus A, right. 

Well what is Mu of B j? So Mu of B j is Mu of A1 minus A j which is equal to Mu of A1 minus 

Mu of A j because everything is finite remember that, so this is equal to Mu of A1 minus Mu of 

A j, A j remember Mu of A1 is finite, so Mu of A1 is finite so Mu of A2 is finite, Mu of A3 is 

finite, Mu of A4 is finite etc everything is finite. This will converge to so well not converge it 



actually increases to right by our previous result, Mu of A1 minus Mu of A, okay which is same 

as saying, so Mu of A1 is common here and I am taking minus. 

So this tells me that Mu of A j decreases to Mu of A okay, so these two results are equivalent to 

a measure being countably infinite, so this property yeah this property and the corollary we have 

root later is actually equivalent to being countably additive. It is the property which characterizes 

the countable additive with us of the measure Mu, but let us look at some example. 

(Refer Slide Time: 15:36) 

 

So one example to show why the extra condition in this is necessary? So we have this extra 

condition that Mu of some set is finite that is necessary, why is that? So let us look at a simple 

example its 1, 2, 3 etc. so this is the integers, positive integers and the sigma algebra you take the 

our set all subset of x and define Mu to be the counting measure, right, counting measure, so 

what is the counting measure? 

So this is simply number of elements in A, so we know that it is a measure, okay, so let us define 

A n, okay A n is n, n plus 1, n plus 2 and so on. So that is a set right, so that belongs to script f, 

right because script f is all subsets, so this is a subset of x and sets. What is Mu of A n? Mu f An 

is the number of elements in A n but that is infinity, there are infinitely many elements but An s 

are decreasing right, so A1 has the whole space, A2 is 2 onwards, A3 is 3 onwards and so on. 



So the limit is A which is the intersection A j, j equal to 1 to infinity well what will be that? That 

is the empty set and Mu of A is 0, okay. So I have Mu of A n to be infinite for every n and Mu of 

A to be 0, so this does not converge to those okay, so the condition that one of the sets has finite 

measures is a necessary condition. So let me stop with an exercise. 
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Okay, so I have X and F okay so this is sigma algebra let Mu be a finitely additive measure on F, 

what does that mean? That is if I take A1, A2 etc. A n in a finitely many disjoint then Mu of 

union Aj, j equal to 1 to n equal to summation Mu of A j, j equal to 1 to n. So this is what is 

called finitely additive, countable additive would be there are infinitely many sets disjoint and 

then you can add up. 

So I start with a finitely additive measure, suppose Mu have the following property, so this is the 

property which we just proved, whenever I have sets A n in script F such that A n increases to A, 

so remember A n increases to A meaning I have A1 I have A2 bigger than A1, A3 bigger than 

A2 and so on, right and A is the union of all sets. 

Whenever this happens we have Mu A n increases to Mu of A, okay then prove that Mu is 

countably additive, so remember we started with a finitely additive measure and we are saying 

this property whatever we proved earlier assuming countable additivity now we can prove that 

the measure is countably additive assuming that it is only finitely additive but this extra property, 



okay so that is what I meant by this properties more or less equivalent to being countably 

additive measure. 

Okay so what we have done so far is to start with measurability of functions and we have looked 

at some property of the measure, in the next lecture we will start with integration of positive 

functions where we will use the symbol functions and then first define integral for symbol 

functions which would be immediate generalization of what we do for step functions in the case  

of Riemann integral and then we take we extend it to positive measurable functions and then to 

real valued and complex valued functions, that is what we will do, okay.  


