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Product Sigma Algebra  

Okay, so in the last lecture, we saw LP spaces, we saw some properties of LP spaces 

depending on the space X if it had a locally compact Hausdorff space and topology and so on, 

then we saw that continuous functions with compact support from a dense subspace of LP 

and things like that. Now, we will go forward, our aim to, our aim in the coming lectures will 

be to look at product spaces and define what is known as the product measure.  

So if I have two spaces, two measure spaces, let us say X and Y with measures on them, we 

look at X cross Y, the Cartesian product, and then try to define the product measure on that 

space. So this will also be applicable to, let us say, the real line or Rn in general, you can look 

at Rn and Rm, we have Lebesgue measures on both of those spaces. And the product measure 

will be defined. So we will relate all this to whatever we already know in Rn for general n.  

But as usual, we will stick to the general settings, abstract settings where we have spaces x 

and y and we look at X cross Y. And then we put a sigma algebra on x cross why, which 

comes from subsets of x and subset of y put together. And then we will define a product 

measure. So the definition of the product measure takes some time, it is a actually a theorem. 

And then we will see how to (integra) how it affects integration on the product spaces. Okay, 

let us start. 
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Before we start product measures, let us let me give you a simple exercise. So, we will start 

with start the day with exercises. Construct an f in L1 of R on the real line such that f is 

positive, well you can actually take it to be strictly positive. Continuous, but f is unbounded, f 

is unbounded.  

So this is to make sure that you understand the spaces a little bit clearly so, when we say 

something is in L1, its integral is finite. So, you would want something, which dies down at 

infinity, but that need not happen always unless you put extra conditions on f.  
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So, let me tell you how this is this is done, give you hints on how to construct f. So what you 

do is you look at the points, 1, 2, 3, etcetera. So let us say n. So at n, I want f to be n. So let us 

say this is the height n. So I am trying to construct a continuous function with the property 

that f of n is n so that it is unbounded, but then around n I locate a triangle like this.  

That is graph of my function that is continuous. And I want the area of the triangle to be 1 by 

n square which means that this length will be of the order 1 by n cube, the area is half base 

times the height, height is n and base is, if it is 1 by n cube, then I will have 1 by n square as 

the area.  

So around each of them I have these triangles, which are at a height n at n and so on. 

Remaining places you make it 0 so that it is a continuous function and f is positive so, f is 

well f is non negative. And integral of f with respect to the Lebesgue measure is the sum of 

the areas, area of triangles. Because the area under the curve was the Riemann integral of the 

function and if we look at some interval like this, it is a continuous function. And so Riemann 



integrable, Riemann integral is equal to the Lebesgue integral and Riemann integral is the 

area under the curve which is the area of the triangle.  

And so, that is this is like 1 by n square. So it converges, so, this will imply that f is in L1 but 

it is unbounded, but it is not strictly positive. So, what you can do is you can add something 

which is strictly positive. So, look at this function, this function plus something like 1 by 1 

plus x square or something like that. So, this function is also in L1, but it goes to 0 at infinity. 

So, this function plus 1 by 1 plus x square will be an unbounded continuous function strictly 

positive integral is (fine) finite. So, continuity alone will not tell you that it goes to 0 at 

infinity, but if f is uniformly continuous so, if f is in L1 of R and f is uniformly continuous, 

then it has to go to 0 at infinity, then f of x will go to 0 as mod x goes to infinity at infinity it 

has to die down.  
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Okay, so with that exercise we can start the product measures. So product measures. So we 

have two spaces. So first of all we need to define the sigma algebras and so on, so we will 

start with that. So I have X F so that is a space, X with the sigma algebra F, and I have Y and 

let us say G, script G. So script F is a sigma algebra of subsets of X. And script G is a sigma 

algebra of subsets of Y that is how we see it. We want to define, so, we will look at X cross 

Y. So, X cross Y is the Cartesian product of x and y. So, this is simply all tuples, two tuples 

ordered pairs x and y such that x belongs to capital X, y belongs to capital Y.  

So, this is the usual set theoretic Cartesian product. We want to put, so, we want to construct 

we want to construct a sigma algebra, construct a sigma algebra on of subsets of X cross Y 



okay of subsets of X cross Y, but the sigma algebra should be related to F and G. So, related 

to related to script F and script G.  

So, we wanted to find the product of these two. So we start with some definitions, so a 

definition measurable rectangle. So you have seen this in the case of Rn, it is essentially the 

same definition, measurable rectangles. So these are sets of the form A cross B. So any set of 

the from A cross B is a rectangle well. It is called a measurable rectangle if A comes from 

script F and B comes from script G. So you take a measurable set here, a measurable set here 

and look at the Cartesian product as a subset of X cross Y.  

So A cross B is contained in X cross Y. Such a thing is called a measurable rectangle. So the 

X will be here, the Y will be here and let us say this is A. It need not be an interval as I have 

written, I have drawn because these spaces are X and Y are abstract spaces. So we are 

looking at something like this. If you are looking at the real line, the usual rectangle would be 

a measurable rectangle. So that is the definition of a measurable rectangle. 
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Now define elementary sets, elementary sets. So this is denoted by script E. So maybe I 

should write it slightly clearly, script E. Script E is the collection of finite disjoint union of 

measurable rectangles. So, it is finite disjoint union of measurable rectangles. So you take a 

finitely many rectangles disjoint and look at their union. So, these are all subsets, so 

elementary sets are subsets of X cross Y.  

So, this consists of subsets of X cross Y. So that is one step towards constructing the sigma 

algebra. Now, I want to define the product sigma algebra. So, remember we have F and we 

have G, I want to define F cross G to be. So F, define the product sigma algebra, product 

sigma algebra of script F and G to be. So, this will be denoted by F cross G. So, that is just a 

symbol. F cross G is the sigma algebra generated by measurable rectangles. So, let me recall 

so, remember the measurable rectangle is defined here to be A cross B where A is in script F, 

B is in G.  
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So, you take sets from here sets from here, look at the product set that is a subset of X cross 

Y, look at the smaller sigma algebra containing all of them. So, this, generated by also means, 

so, we have seen this before, this is this means that script F cross script G is the smallest 

sigma algebra containing measurable rectangles. That is what you mean by generated by 

measurable rectangles.  

So, that defines it. So, we have defined several things one is the measurable rectangle, which 

is simply product set of measurable sets, elementary set is a finite disjoint union of 

measurable rectangles and the product sigma algebra is the one generated by measurable 

rectangles.  
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So, let us look at one example and then go ahead. So, let us look at the real line and the Borel 

sigma algebra or the real line. This is the Sigma algebra generated by the open sets. So, you 

can look at R2 as a product space that is R cross R. Then, so, exercise. Prove that the Borel 

sigma algebra of R2. So, this is defined independently of anything, R2 is a topological space. 

You look at open sets and generate the sigma algebra that is your Borel sigma algebra of R2.   

Prove that this is actually equal to the Borel sigma algebra of the real line cross Borel sigma 

algebra of the real line. So, remember we have two sigma algebras, the product is the sigma 

algebra generated by measurable rectangles. So, you take a Borel set from here, take another 

Borel set from here, look at the product, look at all such sets, take the (gener) sigma algebra 

generated by that.  



So, this is not difficult. So, this, or more generally you can prove that Borel sigma algebra of 

R m plus n. So, this is defined independently of anything, use actually the product sigma 

algebra of B of Rn. Well, what do we do? Here so, all that you have to do is to use the 

topological fact that product topology on.  

So this this follows immediately from the fact that product topology on Rm cross Rn which is 

R m plus Rn is same as the usual Euclidean topology on R m plus n. So that will do, if you 

use that you will get this immediately.  
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Now, well, of course, you may ask the same question for Lebesgue sigma algebra, so I will 

write this as a note, we will prove this later. So, let us say L of R2 is not equal to L of R cross 

L of R. So if I look at the product sigma algebra of Lebesgue sets on the real line with itself, I 

will not get the Lebesgue sigma algebra on R2.  

So, in fact, so some of this we will see soon. In fact, well, the Borel sigma algebra of R2, of 

course, this is the product sigma algebra of R and Are, will be contained in the product sigma 

algebra of L of R with itself, the Lebesgue sets. And that is contained in the Lebesgue sigma 

algebra on R2. So, we will see just in fact, in general if I look at m plus n, I can have the 

same containments of sets.  

So, R m plus n is contained in L of Rm cross L of Rn which is contained in L of R m plus n. 

Well this is because these Lebesgue sigma algebras by construction are complete and so, it 

has all the subsets of sets with measure 0. So, that makes it very big. So, let us try to justify 



some of this, before that, for that we need what are known as sections. So we will do, we will 

define this in general.  

So, let E be a subset of X cross Y. So remember we have spaces x y and the Sigma algebra 

script F and script G. Then, define the sections of E, by, so now onwards, the notation will be 

very, very important. So E sub x, so small x is a point in capital X, E sub x. This is, so x is 

fixed now, I am looking at the x section of E. This is all y in Y such that x comma y belongs 

to E. So, notice that this is a subset of Y, the x subsections or subsets of Y. So, let us see what 

does it mean.  

So, let us say I have x here, I have y here, I have some set E right, which is in X cross Y. So, 

I take some point x here, what is E sub x? So E sub x is, so, you draw the line through x and 

wherever it intersects E, so, that will give me a set in Y, that is my E sub x, correct? All those 

points here, which such that x comma y is here. So, that is simply this collection. So, E sub x 

is a subset of y. Similarly, I define E super y so, that is a Y section. This would be a subset of 

x right. So, you look at all those points x and X, such that x comma y is in E, this is the subset 

of x.  

So, let me draw this, maybe use a different color. So, let us say this is my y then what do I 

do? I draw a line through y parallel to X that will intersect E somewhere. So, you look at all 

those points. So, that gives me some set here and that is my E super y, it is a subset of x. So, I 

hope that is clear, the sections are clear. 
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Well, the sections are nice sets, why is that? So, let us start with the. So, let us look at some 

trivial example so that this is even clearer. So maybe take E to be A cross B. So I will draw 

this slightly smaller. So let us say this is A, A here. So let some you can think of this as R2 

and some interval if you like, does not really matter. And I have B here, some set. So A cross 

B is the measurable rectangle here. What are the sections? So E sub x, so I fix an x, either 

here or it can be outside. If it is here, I draw the line and I will get only B.  

So E of x is B. If x is in A. So if x is in A, if x is outside A, so if x is here, then this line does 

not intersect A cross B at all. So then it is empty. So it is empty set if x is in A complement. 

Similarly for y sections, correct? So we continue. So that is a easy example.  
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Well, the sets in X cross Y can be complicated it may not be measurable rectangle always. 

But the sections are going to be nice. So, that is the first theorem. So if E belongs to script F 

cross script G, so that means we have a space x, we have a space y and we have F cross G, 

then the sections are also measurable, E sub x, so remember E sub x is a subset of y. So it is 

going to be measurable in G. It is going to be set in G and E super y. So, this is true for every 

small x in capital X, E super y is a subset of x. So this would be in script F for every y in Y.  

So let us prove this. Proof uses good sets principles. So, let us look at good sets principles. 

Well, what is good sets principles? Well, we will collect all the good sets. So, let omega be 

the collection of all those sets E in script F cross script G such that E sub x belongs to G. 

Remember E sub x is a subset of y. So E sub x. Yeah, for every x in X, for each x section, we 



land in script G, you look at all those sets, we want to show that good sets are all the sets, all 

the sets in F cross G are good sets.  

Remember, F cross G is the product sigma algebra, it is the sigma algebra generated by 

measurable rectangles. So it contains more than just the measurable rectangles, unions 

complements, intersection and so on. But let us see what omega is, omega is the collection of 

good sets. So let us see what all it contains.  

So, first of all measurable rectangles are in omega. Why is that? Because if I look at A cross 

B, which is in script F cross script G, then the section so if I take E sub x, remember? We just 

did this, this is B if x is in A empty otherwise. X is in A complement. So E sub x is either B 

or phi. But B is in script G. So this would be in script G all the time. So this is satisfied.  

So measurable rectangles are in omega 2. Well, now you can see where it is going. If E 

belongs to omega, then E complement also belongs to omega. Well, so now I am not 

assuming E to be a measurable rectangle, E is an arbitrary set in omega, which means E is a 

set in F cross G such that the sections are in G, x sections are in G. I want to say E 

compliment also has the same property.  

Well, why is that? So what do we do? Look at the section of E complement. So I want to look 

at this section of E complement. So let us draw some picture. So let us say this is E, E 

complement is whatever is outside, So whatever is outside is E complement. So I take a set’s 

point x. Well, maybe I take a point here that is that will show it better.  

You draw a line through x and see where it intersects, that gives me E sub x. But what is E 

complement sub x? Well, you draw the line through x and see where it intersects E 

complement. So it intersects E complements at these places. So I will get something from 

here to upstairs and something from here to downstairs, this portion which is the complement 

of whatever is here. Which is, but this is simply E sub x.  

So this portion will consist of Ex complement, so which is same as E complement sub x. So 

this is simply E complement. So you look at E compliment first as a subset of F cross X cross 

Y, and look at the section.  

But then this tells me that E complement has the property that the x sections R in G, because 

this is in G because E (comple) E sub x is in G. So, that means, because E sub x is in G, E sub 

x complement will be in G, which is same as E complement sub x. So, E compliment has the 



property that all sub x x sub sections are in G. So this implies E complement itself is in 

omega. So omega is closed under complementation. And you can do same thing with a 

countable union.  
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So 3, if E1, E2, E3, etcetera belong to omega then union Ej, j equals 1 to infinity also belongs 

to omega, why? Well, what I know is E1 sub x, E2 sub x, etcetera, etcetera, they all belong to 

script G. I want to show that union belongs to omega. So, you look at union Ej, j equal to 1 to 

infinity, and you will look at the x section. Well, just like what we did earlier, we will get that 

this is actually you look at the x section of each of them, j equal to 1 to infinity and take the 

union but each of them belongs to script G.  



So, the union also belongs to script G because it is a sigma algebra So now, we have proved 

three properties, what are the properties? One is measurable rectangles are in omega, omega 

is closed under complementation, omega is closed under countable union, which means 

omega is a sigma algebra. Hence, omega is a sigma algebra.  

Well, the whole space is there, the empty set is there, it is something which you can check 

very trivially. So, it is a sigma algebra, but it is a sigma algebra which contains the 

measurable rectangles.  

(Refer Slide Time: 27:48) 

  

 

 



 

But the smaller sigma algebra containing measurable rectangles is F cross G because that is 

the product sigma algebra which contains the measurable rectangles. Hence, it will contain 

the sigma algebra generated by measurable rectangles. So, this implies script F cross script G 

which is the sigma algebra generated by measurable rectangles, that will also be contained in 

omega because this is the smallest sigma algebra containing measurable rectangles and so it 

will be contained in omega.  

So, now if you look at the good sets definition, this omega is something which is contained in 

F cross G. Now, we have proved the other way. So, omega is equal to F cross G which means 

whatever set I take in F cross G, I have this property that sections are measured. So, this 

implies omega is actually equal to F cross G. So, all sections are measurable similarly for E 

super y. Same proof. So, well this immediately tells us something  
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So, let us, we will finish with that. Let us look at R2, so maybe example or remark. Let us 

look at R2 and let us take A, which is a, or N, let us call it N, which is contained in 01. So, 

remember we defined, we constructed a non-measurable set, non-Lebesgue set. And consider, 

N cross 0, so this is contained in R2. So, I have 01 here and N is here, it is a subset here. And 

I am looking at cross 0.  

So, it is on the on the real line as a subset of R2. Now, N cross 0 belongs to Lebesgue sigma 

algebra of R2. Well, why is that? Because, the outer measure of N cross 0 is 0, so we have 

done this; is 0, because I can cover this with small rectangles of length epsilon. So, take the 

width of the rectangle to be epsilon and the length is 1. So, the area of this would be epsilon 

and epsilon can go to 0.  

So, that will tell me that N cross 0, anything inside the real line will have outer measure 0, 

because the real line itself has outer measure 0 in R2. Remember that we are looking at the 

two-dimensional Lebesgue measure. So, because of that this is a measurable set, but it is not, 

but if I look at N cross 0, this cannot be in LR cross LR. Why is that? If it is the product 

sigma algebra here then if it belongs to the product sigma algebra, the sections will be in each 

sigma algebras, because N cross 0 if I look at, super 0.  

So, that is a 0 section of N cross 0. That is just N, this is just N and by previous result, if N 

cross 0 was in the product sigma algebra, then the Y sections will be in the second sigma 

algebra. This because of this, so, but that is not true. This is a contradiction.  



So we will stop here. We have just defined the product sigma algebra to be the smallest sigma 

algebra generated by measurable rectangles and we have seen that sections are measurable. 

So, that happens only if you are underlined sigma algebra is a product sigma algebra. We will 

continue with this, we will define the measures using the measures on x and y. We will and 

the Sigma algebra we have just defined on X cross Y. We will define a measure on X cross 

Y, that is our next step. 

 

 


