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So, we go back to our abstract settings where we have a Space X, sometimes it will have a 

topology, locally compact (())(0:39) space, with some additional properties like sigma 

compact methods and so on like R n. And we will be studying function spaces on these 

spaces associated with the measure. So, given a positive measure we can define what are 

known as LP spaces. Our aim is to study those spaces. So, let us start, we will of course look 

at some examples to give you a good idea about it. 
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So, let us start, so before we go to LP spaces, we need some preliminaries. So we will define 

something. So define. So, I have a function phi from an interval a, b to R. This is called 

convex, if phi of lambda x plus 1 minus lambda y is less than or equal to 1 minus lambda into 

phi of x plus 1 minus lambda into phi of y. Well, this is true for all x and y in the domain of 

phi and lambda between 0 and 1. So, we have some inequality. So, let us see what that says.  

Okay, what does this mean, what does this inequality mean? So, let us look at the graph of 

phi. So, let us say this is the interval a, b and I take some points there, x and y. So phi x 

would be some points on the y axis, so, it would be let us say this is x phi x and this is x y phi 

y. So, this would be x phi x and this is y phi y as points in R2. Well, if lambda is between 0 

and 1, any point of the form lambda x plus 1 minus lambda y will belong to the interval x, y. 



Okay, in fact, closed interval x, y because I am taking lambda equal to 0 and lambda equal to 

1. So lambda equal to 0 will give me y, lambda equal to 1 will give me x, lambda between 0 

and 1 will give me some points here. So the point, if I fix a lambda between 0 and 1, a point 

in the middle would be actually lambda x plus 1 minus lambda y. It is an arbitrary point 

inside x, y. So that also has some image. Now let us look at those inequality, what does it 

say? 

Phi of the point in between x and y should be less than or equal to 1 minus lambda. Okay, so 

there is a slight mistake here. This is just lambda, convex combination. So, phi at lambda x 

plus 1 minus lambda y should be less than or equal to 1 minus lambda phi x into lambda y. 

The way I am writing is slightly confusing, so let me correct this. So, the lambda is with x, so 

lambda into phi x, 1 minus lambda is with y so I have 1 minus lambda here. So, I had written 

it the other way. 

So, if I look at a point in between x and y, which is lambda x plus 1 minus lambda y, phi of 

that point should be less than or equal to lambda x plus 1 minus lambda y, lambda phi y. 

What does that mean? Phi x and phi y are two points and lambda and 1 minus lambda will 

make a point in between. So, if I join this line, the lambda phi x plus 1 minus lambda phi y 

will be somewhere here, because this is phi of x and this is phi of y and this point will be 

somewhere here. 

And the inequality says that, if I look at the graph of phi that should be below the line. So, 

that is why it is called convex. So, convex graphs will be something like this. So, you take 

any two points on the graph, join the line, the graph in between should lie below the line. 

That is what convexity means. So, functions like this, functions like this and so on. 
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But functions like this will not be. So, this would be what is known as concave, which we 

will not talk about, we will stick to convexity. So take this as the definition of convexity and 

we use that. Now, it is possible to write it in different formations. So, let me give several 

exercises here to give you an idea about what is a convex function actually. 
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So exercise, so equivalent formation of, equivalent definition of convex functions. Well, what 

would be this? This is same, so you take points, so I have, so let me draw the picture again, I 

have the interval a, b. Take points in between so I can take s, let us take t and let us take u. So 

s is less than t less than u and of course everything lies in a, b, the interval a, b. The 

equivalent formation is phi is convex. So phi is convex in the above definition. 

So in the above definition, if and only if phi satisfies the inequality, phi t minus phi of s, so I 

am taking t and I am thinking s and u. So I am looking at the image of phi t and image of phi 

s and you are looking at phi t minus phi s by t minus s. So, this is what you form for making 

the derivative. This is less than or equal to, if you go to the other side, phi u minus phi t by u 

minus t. So, this is same as saying phi is convex. So, the earlier inequality if you rewrite, you 

will get this. 

So, let us look at second one. Suppose, so if you look at this quotient, so you know how 

derivatives are formed by taking this quotient and taking the limit. 
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So, this will tell you that if phi is differentiable, if phi is differentiable…So we are not 

assuming anything on phi, phi is just a function which satisfies this inequality, that is the 

assumption. Suppose phi is differentiable, then because of this inequality, then phi is convex. 

So convex you can take either the equivalent definition or the definition earlier if and only if 

the derivative is increasing, phi prime is increasing. So, it is an increasing function. So, this 

inequality essentially says that. 

If I take the limit of appropriate t going to s and t going to u and so on, you will see that that 

is the inequality you get. So, if I have a function whose derivative is increasing, then it is 

convex. Well, this immediately implies that if phi is twice differentiable, so 2 times 

differentiable, then phi is convex if phi double prime is positive, greater than or equal to 0, so 

that will do.  

Well, that is obvious from the second exercise because if phi double prime is positive, this 

immediately implies that phi prime is increasing. A function is increasing if its derivative is 

positive. So, that tells me that phi prime is increasing and exercise 2 tells me that phi is 

convex. So, this is one way of checking something is convex or not. Most of the functions we 

deal with are smooth enough so you can differentiate them. In fact, somewhat the converse of 

this is also true but we will not get into that. 
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And more importantly, if phi is actually convex, if phi is convex, then phi is continuous. So, 

convex functions are continuous on open interval, so the open interval is important. You can, 

so if you look at the book by Rudin, Real and Complex Analysis, so this is the chapter on LP 

spaces, that is what we are looking at now, chapter on LP spaces, I think it is chapter 3 or 4. 

So, phi is, if it is a convex function, then it is already continuous. So, it is like in fact one can 

prove that it is differentiable almost everywhere and things like that. So, but we do not need 

any of those. We simply look at the convex functions whenever it is necessary and use this 

test, you know, if I take some function in a domain, if I can differentiate I simply look at that. 

So, for example, you can look at the function f of x equal to 1 by x and see if it is convex or 

not.  

So, you look at or f of x equal to e to the x for example, that is easy. If you draw the graph, 

you will see that it is convex, but you can also check that the second derivative is e to the x 

itself which is positive, so f is convex. So which functions are convex can be sometimes 

easily checked through taking derivatives which we will use these techniques sometimes. 
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Okay, so, now I can start with, so let me rub off this part. We will start with LP spaces, okay. 

So, these are function spaces, so these are spaces consisting of various functions, which we 

will, we will study them, so LP spaces. So, the functions, convex functions are defined on 

intervals. Now we are going back to our abstract settings, so abstract setting and of course, all 

this will be applicable to R n. So, I have a space X, so this is our usual triplet X, I have a 

sigma algebra and I have measure mu, this is my measure space. 

So, right now there is no assumption on capital X, except that it is a space and mu is a 

positive measure. So, for p greater than 0 define LP spaces, so strictly speaking I should say 

LP of X, f, mu, sometimes we will denote it by, sometimes simply LP of mu when the space 

and the Sigma algebra are all understood, we simply look at LP of mu. Well, what is this? 

This is the collection of measurable complex valued functions, measurable functions whose 

LP power is integrable. 

So you look at integral over X, you look at mod f to the p, so f is measurable, so mod f to the 

p is measurable and I can integrate this against a measure mu, because everything is positive 

here. And you want this to be finite. So, recall that we defined L1, recall L1, L1 of mu was 

collection of functions, such that the mod f d mu was finite. And that of course agrees with 

our LP space when p is 1. When p is 1, we are simply looking at mod f. 
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So, this space is defined as a collection of functions on X, so measurable functions on x. So 

measurability, remember, depends on the Sigma algebra you are looking at. So, you can look 

at LP of let us say the space R with the Lebesgue sigma algebra and the Lebesgue measure. 

Well, what would be this? You will be looking at all those measurable functions from R to C 

or sometimes it can take infinity values as well, measurable such that integral over R mod f to 

the p dm, that is our measure, is finite. 

So this is a collection of function. Of course, we do not know how big the collection of 

functions or the LP spaces, it will all depend on how the space is, how the measure is and all 

that. 
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So let us look at some trivial examples before we study the spaces. So let us take x to be a 

finite space. So that is the easy case always, 1, 2, 3 etcetera. n, so it is a finite space. The 

Sigma algebra is of course the power set and mu is the counting measure. So, these are 

examples, which we looked at very early in the course and easy examples to understand. So, 

what do I mean by LP space? So I have LP of x f mu. So what do I do? I look at all those 

functions from X to C measurable. 

Well, the Sigma algebra is the power set. So any function is measurable such that the integral 

of mod f to the p d mu is finite. Well, what does that mean? What is a function on x? So, f 

from x to C, then f is identified with the n tupple f 1, f 2 etcetera. F n. So, these are complex 

numbers. So, this space can be identified with, so these are all elements of C n or R n, if they 

are real valued. And what is this quantity? 

Well, you have counting measure, so this is this becomes a summation we have seen that, so 

this is simply mod f j to the p, j equal to 1 to n. And this has to be finite, of course this is a 

finite number because everything is complex valued. So, this is simply C n with this 

condition. So, this condition give us what is known as a norm. So let us define that. So maybe 

I should have done this before the examples. So but let us look at this. 

So, I have a Space X, I have a sigma algebra and I have a mu, measure space, this is general, 

we are not looking at the example now. Define the LP norm, so remember, we defined what a 

norm is, I will repeat that of f, LP norm of f to be, so f is a measurable function, to be….So it 

is denoted by this symbol LP norm f equal to integral over x, mod f to the P d mu. So if f is 

an LP, this is finite and you take the power 1 by p. We will see why the power 1 by p is 

necessary. 
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So, before I go to the examples, let us just notice one property. So, note that if alpha is a 

complex number, what is the norm of alpha f? So, alpha f, alpha is a complex number, you 

multiply f with that, you will have x modulus of alpha times f to the p d mu to the 1 by p. But 

alpha is a constant. So, that comes out of the integral as alpha to the p and there is a 1 by p. 

So, this is just alpha times LP norm of f. So, this is one of the properties of the norm. 

So, let us, let me recall the properties of the norm. So norm on a vector space V. So the vector 

space can be over R or C, it can be more general but we will not bother about that. So what is 

a norm? So norm is a function from V to close 0, open infinity, so it is a positive function, 

which satisfies 3 properties. One, norm of v any vector is greater than or equal to 0, and V 

equal to 0 if and only if it is norm is 0. 

Two, if alpha is in the field or R, if the vector space is real space, then alpha times v. So that 

makes sense because it is a vector space, the norm of that is mod alpha times norm v. So that 

is the property here we have. And three is the triangle inequality, norm of v 1 plus v 2 is less 

than or equal to norm of v 1 plus norm of v 2. So in the LP norm, these two are sort of easy to 

see, the first two properties, one of them we have already checked, we will see the third 

property. 
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But let us go back to our example. I have x to be equal to 1, 2, 3, n, I have the Sigma algebra, 

which is the power set and I have the counting measure. The LP space is simply all functions 

on x, because this is always finite. 
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But let us see what is the norm. So if I take, so instead of writing, so let us write the sets 

again. So I have the finite set and the power set as the sigma algebra and mu counting 

measure. I can define, so if I look at LP of x f mu, well, this is same as the space C n, because 

functions are simply n tupples, but the difference is with the LP norm. 



So, if I take the p, if I take the element here, so let us call it a 1, a 2, a 3 etcetera a n, I write it 

as a tupple, so that is the element here. What is the LP norm of this? Well, LP norm of this is 

summation mod a j to the p, j equal to 1 to n to the 1 by p. So, when p equal to 2, this is the 

usual Euclidian now, when p equal to 2, this is the usual Euclidean norm which you are 

familiar with, Euclidian norm. So summation j equal to 1 to n mod a j square to the half. 

So the p norm generalizes the L 2 norm. Of course, we have to show that it is a norm, we 

have done the triangle inequality for example, for LP norm. So we will do this in general. So 

let us start with some lemma. 
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So aim is to prove that LP norm is actually a norm. So I will put this in apostrophe, so we 

will see that it was a norm under appropriate condition. But this will happen only for p 

between 1 and infinity. So p equal to infinity is included, I have to define. So we will define 

LP for p equal to infinity later. So p equal to infinity there is a slight problem, because we are 

taking the power of f with respect to p. So p equal to infinity does not make sense. So it has 

to be appropriately modified. 

I will motivate that and then define. Okay, so let us, maybe let us do that first. So define L 

infinity of X, f, mu….Well, what should be L infinity? 
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So, let us look at the trivial example we have of Euclidean spaces. So that is the LP norm. So 

a 1, a 2, if I look at it up to a n, then this is summation j equal to 1 to n. Mod a j to the p to the 

1 by p. So, what will happen to this as p goes to infinity? So, if you compute the limit of p 

going to infinity, you will see that this goes to maximum of over j mod a j. So, that is the 

supremum of the values mod a j. So, that is what we want to define L infinity as. 

But you see this is a counting measure, so there are no sets of measure 0. So if there are sets 

of measure 0 and the function takes the value infinity there, then the maximum will be 

infinity, we do not want that. So we will throw away sets of measure 0 and then take the 

maximum. So, how do we do this? 
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Well, define L infinity to be the collection of measurable functions, such that there exist some 

M less than infinity such that modulus of f of x is less than or equal to M almost everywhere. 

So f is bounded by, so this says that f is bounded by the constant function m almost 

everywhere. So, there may be a set of measure 0 where f is bigger than m, if it will be infinity 

there, it does not really matter. But what should be the L infinity norm? Well, this is the 

infinium of all such m’s. So, you take the smallest value m which works. 

So, m such that mod f of x is less than or equal to m almost everywhere. So, that is what we 

mean by L infinity norm. Let us look at some trivial example, it will be very clear. So if I 

take x to be again 1, 2, 3, etcetera, n and instead of counting measure, let us define mu of the 

Singleton j to be 1. So I will take the Sigma algebra to be the power set of course. Mu of j 

equal to 1 if j equal to 1, 2, 3, etc up to n minus 1. So mu of n is left out, so I put that to be 0. 

So there is a set of measure 0, that is all that is all I wanted. 
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So in this case, what how will the L infinity norm look like? Well, the set of measure 0 will 

not matter. So, if I take f to be, so f is a tupple, so f I will take to be, let us say 1, 2, 4, 6, 

etcetera. Or 2 to the n let us say. So, this is, I will take 2 to the 1, 2 to the 2, 2 to the 3 etcetera 

up to the n minus 1, 2 to the n. So what does this mean? This means that f of 1 equal to 2 to 

the 1, f of 2 equal to 2 to the 2 etcetera. This is my function, f of 2 to the n equal to, f of n 

equal to 2 to the n. 

So, what would be the L infinity norm of f in this case? Well, I have to look at the bound of f, 

of course, everything is bounded by 2 to the n. So, f is of course less than or equal to 2 to the 



n. But the value of f on 2 to the n is a set of measure 0, I can forget that. So, I can simply look 

at this and take the supremum. So, this is simply 2 to the n minus 1, it is not 2 to the n. 

Because that set of measure 0 does not play a role when I look at this definition. 

So, in general, you can have, so x could be some set like this and you may have a function f 

defined there and there may be a portion where f is infinity. But if this is contained in the set 

of measure 0, then this will not matter. Okay, we look at only f here and take the supremum. 

So, that is the L infinity norm. So, when you deal with L infinity norm, just see that it can, 

sets of measure 0 you can discard essentially. 
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So, we have defined LP and L infinity norm. So, our aim is to prove that LP is a norm. So, LP 

for 1 less than equal to p less than equal to infinity, the norm is, so we will prove that LP 

norm is a norm. So, integral over x, mod f to the p d mu to the 1 by p is a norm. So, norm 

with some, I will explain that for less than equal to infinity and we have L infinity norm equal 

to p equal to infinity. This is what we want to prove. So, let us start with the lemma. 

It is a technical lemma to prove that it satisfies certain inequalities, which is necessary to 

prove triangle inequality. So, this is an easy lemma. So, if a, b, alpha, beta, they are all 

positive numbers with alpha plus beta equal to 1. So, this is like the convex combination, then 

we have a to the alpha, b to the beta is less than or equal to alpha a plus beta b. So, there is a 

convex thing here, alpha plus beta is 1. So, this is like lambda a plus 1 minus lambda b, this is 

my alpha, this is my beta. 



So, you will see that convex function has to come in, so let us prove this. Proof, well, check 

that minus of log is a convex function. So, you can differentiate wherever it is defined. So it 

is a convex function wherever it is defined. Well defined. So you can take the second 

derivative and see that it is…..the first derivative is minus 1 by x, second derivative is minus, 

1 by x square which is positive. So, that is enough. 
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So, because it is convex, we get an inequality. What is the inequality? Minus log alpha a plus 

beta b is less than or equal to, so this is like phi of lambda x plus 1 minus lambda y, that will 

be less than or equal Lambda, here it is alpha, phi of a, the first, so you evaluate the function 

at the first element plus 1 minus lambda is beta here and I have log b. So, minus you can 

multiply, you will get the inequality the other way. So log of alpha a plus beta b is greater 

than or equal to alpha log a plus beta log b. And then you take powers. 

So take exponential on both sides, take exponential on both sides, we will get, to get, well, 

what do you get if you take exponential on both sides? On the left hand side you get alpha 

times a plus beta times b, which is greater than or equal to e to the alpha log a times e to the 

beta log b. Which is same as a to the alpha and b to the beta. 
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That is the inequality we wanted to prove, we wanted to prove this one. And that is what we 

have done here. Okay. So we will stop here. We just defined LP spaces, including p equal to 

infinity, L infinity space. So the L infinity norm is slightly tricky, you need to understand 

that. It simply says that the function is bounded almost everywhere. So there is a set of 

measure 0, on the compliment of that, function is actually bounded, that is enough for the 

function to be in L infinity. 

Our aim is to show that these quantities, the LP norm which we defined is actually a genuine 

norm, modulus at n things, which I will explain. So, we have started with the technical 

lemma. In the next session, we will prove that these are actually norms. Okay. 

 

 


