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Invariance properties of Lebesgue measure 

Alright, so we will continue with the properties of the measure we have just constructed, it is 

actually the lebesgue measure. We have seen the equality in the case of k cells, but since it is 

regular you know the equality will follow for all other sets as well. So, that part I will leave it 

to you. But let us prove a uniqueness property of the lebesgue measure.  
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So, that is the property c, which we had written down in the last lecture. So, m is the measure 

which we constructed is translation invariant, translation invariant. So, we know this from the 

previous construction but we will prove this for every E in, so this follows immediately from 

the regularity properties.  

So, let me, so what do we do is define a new measure, define a new measure, new measure let 

us call that mu, mu of E equal to m of E plus x because it is true for every x in r k. So, you fix 

x in r k. So, let us say x naught. So, x naught is fixed in r k. So, some fixed point I want to 

say mu is same as the lebesgue measure we constructed m.  

So, we have, so if E is a box, if E is a box mu of E by definition is m of E plus x naught but 

this I know is the volume of E plus x naught because it is a box. But volume is translation 

invariant, you translate a box, it we still have the same volume. So, it is volume of E, which 

we know is m of E, so mu of E is m of E, if E is a box.  



So, this implies mu of E is same as m of E for every open set E, for every open set E because 

open sets are disjoint union of boxes and countable additivity, disjoint union of boxes. So, 

here we are using the fact that mu is a measure but that is trivial to see, because mu is simply 

m of E plus x naught. And so, countable additivity immediately follow from them. So, we 

have mu of E equal to m of E for every open set. 
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Now, mu and m both are regular because r k is every open set in R k because every open set 

in R k is sigma compact. And the consequence of Riesz representation theorem both mu and 

m are reasonable measures in the sense that for compact sets, you get finite measure. So, once 

you know equality for open sets and regularity this would imply that mu E equal to m E for 

every borel for every E in m. In fact first for, first for E in borel sigma algebra and then for all 



set, then for all E in M because every E in M is if just the borel set and a set of measure 0, so 

because of that, so this is something which we had done earlier.  

Remember we proved 2 measures (())(4:52) and proving regularity was essentially this 

argument that if to two measures agree on open sets then they agree everywhere with 

regularity first. So, let us go to the next property d. So, this was if mu is any translation 

invariant, translation invariant, so what does that mean? Mu of E plus x equal to mu of E for 

every borel set E and x points in R k. So, any translation invariant borel measure, borel 

measure such that mu of k, so it is a it has to be a reasonable measure, mu of k is finite for 

every k compact.  

Then it is the lebesgue measure then mu equal to some constant c times the lebesgue measure 

for some constant c, some positive constant c constant. So, we have only Lebesgue measure, 

which is a nice translation in this. So, it is a uniqueness property of the Lebesgue measures 

that any measure which is translation invariant is actually a multiple of the Lebesgue 

measures.  

So, let us, how do you prove this? Take a Q naught be a one box, so one box would be, so let 

us take 0, 1 something like this. In the R in R 2 it will be the unit box here 0, 0, 1, 0, 1, 1, and 

0, 1. Put the constant c to be mu Q naught, so this is a number. So, the positive number or a 

non-negative number, but Q naught is the disjoint union of, disjoint union of 2 to the n k, 2 to 

the n k, 2 to the minus n boxes.  

So, what do I mean by that? So, if I look at k equal to 1, so this is k equal to 1. In the next 

level I will have 2 boxes. So, I have 2 to the minus 1 boxes. If I again bifurcate them, I will 

have 4 of them, 4 that is 2 square, 2 to the minus 2 boxes et cetera, et cetera they are all 

disjoint. Since they are disjoint they will the measure will add up.  
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So, if I look at only Q naught and I do this, I will get if Q is a 2 to the minus n box, then 2 to 

the n k times mu of k equal to mu of Q naught. Remember the Q, Q can be a 2 to the minus n 

box anywhere you want, you can translate it and bring it inside Q naught because mu is 

translation invariant.  

So, if the box, if the Q, 2 to the minus n boxes here, you can bring it inside by translation and 

the measure do not change. But the Q naught is 2 to the n k disjoint boxes of this kind. So, the 

measure will add up. So, this is simply, so this is simply writing Q naught as disjoint, 2 to the 

n k disjoint 2 to the minus n boxes.  

But mu of Q naught is c times, it is c, the constant C times m of Q naught because m of Q 

naught is 1. This is the one box. Its volume is 1 but m is a measure, so the same computation 

tells me that this is 2 to the n k times any same box Q. I write Q naught as the 2 to the n 

disjoint, 2 to the minus n boxes.  

So, this tells me that mu of Q is c times m of Q. So, mu of Q equal to c times m of Q, what 

did we proved? We proved that for any 2 to the minus n box. Hence, for any 2 to the minus n 

box Q, we have mu of Q equal to c times m of Q. So, this immediately implies that, if E is 

open then mu of E is equal to c times m of E. Why is that? Because E can be written as, so E 

can be written as union of boxes, countable disjoint union of boxes. 

So, mu of E is the sum of mu of Q j because they are disjoint, but for these are boxes. For 

boxes, we know how it acts. So, this is c times m of Q j. But m is a measure and so it adds up. 

So, this is just c of c E. But now, we know what to do because of regularity, so from here, we 

simply use regularity to produce for all borel sets, for all borel sets.  

So, we will have mu of E equal to c times m of E for every borel set and so for every 

Lebesgue set also, but that is not important here. So, the only translation invariant measure on 

the real line or r k with this property is the Lebasque measure. So, that is the uniqueness 

property of the Lebesgue measure. And so, we have one more property how it behaves with 

the linear transformations.  
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So, let us write down that suppose, I have a linear transformation, suppose T is a linear 

transformation from r k to r k it is a linear map. So, recall what is the linear map T of x plus y 

is equal to Tx plus Ty and T of alpha x equal to alpha times Tx where alpha is a real number, 

x and y are in r k.  

So, that is the statement E then assertion is that there exist some number depending only on T 

greater than or equal to 0 such that measure of T E equal to constant delta T times measure of 

E for every E in m, how will you prove this? So, there are two things here, one is I need to 

know what is the property of T E, so that I can write m of T E. So, m of T E will make sense 

only if T E is measurable.  

So, let us do this in two cases. So, case 1, suppose the singular, suppose T is singular that 

means determinant of T E is 0. Then well, by from linear algebra we know that range of T is 

a proper subspace of proper subspace of R k. And so, measure of T of R k. This is the range 

of T equal to 0 because it is contained in a proper subspace of R k. So, let us recall that in R 

2, if I take a subspace proper subspace that will be either 0 or (())(14:49) and this has measure 

0. This line has measure 0, we did this. So, similarly, any proper subspace of R k will have 

measure 0.  

So, if I take any E which is an R k, then T of E will be contained in T of R k, which has 

measure 0, this has measure 0. So, it is a subset of a set of measure 0 by completeness T of E 

will also be in M and M of T E is 0. So, delta T, so delta T in this case is 0, this is actually, 

this is going to be the determinant which we will prove.  
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So, we will, let us do the case 2 as well. So, case 2, T is invertible, invertible. So, you define, 

define a new measure mu of E equal to m of T. So, I will for E in borel sigma algebra of R k. 

So, here you have to prove that T E is a borel set, if and only E is a borel set. So, this is easy 

because T is continuous and T inverse is also continuous.  

Now, mu is translation invariant because mu of E plus x equal to m of T of E plus x equal to 

m of T E plus Tx because T is linear, which is m of T E which is mu of E, so it is translation 

invariant. And mu of k is finite for every k compact that is trivial, because T of k will be 

compact.  

And so, by uniqueness property, uniqueness property, mu of E will have to be equal to some 

constant which we call delta T times m of E, this is all we wanted to prove. So, we will stop 

here. So, we just looked at some more properties of the Lebesgue measure, how it behaves 

with the linear transformation, more importantly the uniqueness of the Lebesgue measure 

with respect to translation invariants.  

So, we will continue this, we will look at more properties of the Lebesgue measure and 

Lebesgue measurable functions in the coming lectures. More importantly, we will construct 

or at least explain why there are Lebesgue sets which are not borel. So, we have seen an 

example of a set which is non-measurable, non Lebesgue measurable, but we will see 

examples of Lebesgue sets which are not borel sets. 


