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Construction of Lebesgue measure 

So, our aim today is to construct the Lebesgue measure using the Riesz representation theory. 

So, recall that the Riesz representation theorem tells you that a positive linear functional on 

the space of continuous functions with compact support on a locally compact has of space x, 

the place is called ccx.  

If I have a positive linear functional on ccx, it is given by an integration against the positive 

measure. Not just that, so the theorem comes with host of other results that you get a sigma 

algebra which is bigger than the Borel sigma algebra on x. And there are some regularity 

properties, which are very similar to what we have seen for Lebesgue measure.  

So, what we will do is, we will use continuous functions with compact support on R k to 

define a linear functional. This is actually the Riemann integral of the function and that will 

give us a measure which is the Lebesgue measure. And certain regularity properties 

immediately will follow because R k has a property that every open set in R k is a sigma 

compact set on such spaces. If you have a measure which is reasonable in the sense that it has 

finite measure on compact sets, then it is automatically regular we have already done that. So, 

some of those properties we will follow immediately. So, let us start.  
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So, I recall some notation. So, remember the set P n, P n was the set of all those points in R k, 

x 1, x 2, et cetera x k in R k where each coordinate was to the minus n times in integer. So, 

each x j was 2 to the minus n times m for some m in integers. And we had omega n to be the 

collection of, the collection of 2 to the minus n boxes, so remember these were cubes with 

side length 2 to the minus n, remember that was a product of intervals of the type alpha beta. 

It was open on the right hand side remember that, 2 to the minus n boxes with corners in Pn.  

So, in the real line case, we have 1 here, 2 here and so on, you divide this into half and so on 

and we are looking at intervals of the chi. Similarly, for R 2 and R 3 and so on, so we had 0, 

0, 1, 0, 1, 1 and 1, 0 or 0, 1 and then we divide this into 4 equal parts and this area, which is 

open on the, this fourth portion is not there. So, such things are called cubes to with corner in 

coordinates in Pn.  

So, we use this to construct a linear functional, so construct a linear functional on cc of R k as 

follows. Well, how do we do this? This we do this at nth level and then take limits. So, let 

lambda n of f, so f, I am taking f in cc of R k. So, it is a continuous function with compact 

support, lambda n f is simply 2 to the minus n k.  

So, 2 to the minus k is the volume of 2 to the minus k box times the sum of x in P n, so we 

use a different P, so P n, so P n is this collection of numbers or coordinates and you sum up f 

of x. This makes sense. So, remember f is compactly supported, compactly supported, so 

RHS is a finite sum, RHS is a finite sum. But what exactly is this? Well this is actually a 

Riemann sum. So, let us look at one particular case in the real line, so that this is much 

clearer.  

So, I take 0, 1, so let me write the unit interval to be slightly big and then you go to nth level, 

so then I have 1 by 2 to the n, 2 by 2 to the n, et cetera et cetera, 1 is 2 to the n by 2 to the n 

something like this. And you are looking at intervals of this form et cetera et cetera. What are 

we doing? We are, so let us take a take a function which is compactly supported inside 0, 1, 

so I take 0 and 1 and I have some function here.  

So, let us say it is supported inside 0, 1 and we are forming this sum. So, here the k is 1 

because the dimension is 1. So, I am simply looking at 2 to the minus n times sum over x in P 

n f of x. What is this? So, let us (())(6:57), so we are looking at k equal to 1. And we are 

looking at 2 to the minus n summation x over P n f of x, however we do not have to sum over 

all the points in P n because f x supported in 0, 1.  



So, we will look at only this area this interval. So what is this, this is equal to 2 to the minus n 

times, well, I have f 0 that is a point in, 0 is a point in P n, then I have f of 1 by 2 to the n plus 

et cetera, et cetera, f of 2 to the n minus 1, sorry 2 to the n by n, 2 to the n when f of 1 maybe 

f of 1 is not included the one before that is included.  

So, let us not write this point. I will just put a star to indicate that we are choosing the point 

here. Alright, so, what exactly is this? So, you look at each interval, each interval has length 2 

to the n. So here, length of each interval is 2 to the minus n, so you are multiplying by the 

length of the interval and the value of f inside that interval. So, that is a Riemann sum.  
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So, the above is a Riemann sum. So, in Riemann integral remember, we divide this into 

intervals. And then we choose, so ith interval, we choose the supremum and the infimum of 

the function and then multiply by the length of the interval the value of either the supremum 

or the infimum.  

And this sum we have seen here will be something in between. So, the lambda n f is simply 

bigger than the lower sum and less than or equal to the upper sum in the case of real line and 

the similar definitions for R k will make sense, what is P? P is partition of the interval we 

have here.  

So, and as length of P goes to 0, we know that this will converge to, so this and this will 

converge to the Riemann integral of f because f is continuous compactly supported. So 

Riemann integral x is it will converge. So, similarly the limit of this will exist and that is 

precise, and that is also the Riemann integral of f, that is the definition of our linear function.  

So, define lambda f to be equal to limit n going to infinity, lambda n f. So, this is precisely 

the Riemann integral of f. We are not going to write it that way, but this is what happens. 

This is true in R k as well in higher dimension as well, if you define the Riemann integral 

using the boxes instead of intervals.  

So, this is now it is clear, it is clear that lambda f, lambda is linear. Well, why is that? 

Because if I take f and g in cc of R k then lambda n of f plus g. So, what does lambda n f plus 

g? This is the sum, this is the sum the sum and if it is f plus g here, then it becomes some of 2 

things and so, lambda n of f plus g is lambda n f plus lambda n g.  

So, if you take limits, these 2 things will go to lambda of f plus g that is a definition of 

lambda and lambda f here, lambda g here and so on, if you to multiply by a constant, the 

constant will come up. So, lambda is linear, lambda is clearly positive, clearly positive, why? 

Because if f is positive because f is greater or equal to 0 implies each lambda n f is greater or 

equal to 0. Because you are adding the values of a positive function here these things are 

positive so, when you add them, you will get positive numbers and so it is a positive linear 

function.  
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So hence, so, to conclude what we have done is, lambda is a positive linear functional 

because it takes values in the real line or in the complex plane depending on where f takes 

values and as a positive linear functional on the space cc of R k. So, remember R k is locally 

compact (())(12:51) et cetera. So, Riesz representation theorem applies.  

Hence by Riesz representation theorem. So RRT is representation theorem. We get a measure 

which we call m and a sigma algebra sigma algebra script M. So, recall that the Sigma 

algebra script M is such that the Borel sigma algebra is contained in it that is that comes from 

the theorem and we have some regularity properties. So, now we prove all the properties 

which we had stated in the last lectures. 
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So, we will start from a. So, the first assertion a, so I will write down what it is and then we 

will, so a the first assertion was that, if W is a k cell, if W is a k cell, so k cell was remember, 

is the product of intervals rectangle in earlier notation it is productive of interval. Then the 

measure of the W is the volume of W. So, that is the first thing we want the prove. So, let us 

proof that. So, we start with an open set. Let W be an open k cell. So, it is a product of open 

intervals. Let E r, so we have to use the definition of the positive linear functional to conclude 

this.  

So, let E r be the union of those boxes in omega r, so remember the side length here was 2 to 

the minus r whose closure, whose closure lie in W. So, let E r be the union of those boxes in 

omega r. So, remember that side length is 2 to the minus r whose closure lie in W. So, we are 

looking at some W like this and E r is a union of boxes in omega r.  

So, omega r gives me a partition of the space with cubes whose corners are in certain 

prescribed set which we call P r. And this will give me some, so we are looking at the union 

of boxes in omega r. So, we are looking at some boxes like this. Not the ones which go out 

but whose closure lies inside.  

So, remember the W is an open cell open cell, so the boundary is not included. So, when I 

take the closure, I do not want to touch the boundary, so things which are strictly inside. So, 

now by Urysohn’s lemma, so by Urysohn’s lemma there exist f sub r, which are continuous 

functions with compact support and they are between 0 and 1.  

So, these are all part of Urysohn’s lemma statement, you already know that such that chi E 

bar closure is less than or equal to f r less than or equal to chi W which means that on E r it is 

1, outside W it is 0. So, I am looking at something which is 1 on these boxes and maybe on a 

slightly bigger set but it is 0 outside W. So, these are functions given to us by Urysohn’s 

lemma  
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So, put g is a bar equal to maximum of f 1, f 2, et cetera up to f r for each r, I have f sub r I 

am taking the maximum up to r, f sub r that I called g r. So, then volume of E r, is less than or 

equal to lambda of f r less than or equal to lambda of g r less than or equal to volume of W. 

So, let us try to understand what this is? Volume of E r is simply the sum of the volume of the 

each boxes because they are disjoint. So, you simply add them. Now, so let me draw one 

more picture to make this clear. So, let us say this is my W. This is my W, mu is another 

color for the boxes inside.  

So, I have some boxes here. They are disjoint because you are looking at product of left hand 

clothes and right hand open sets, so they are disjoint and that this is what forms if I take the 



closure, I will get Er closure. And well, what is f r? f r would be something which is 1 on all 

this set, so it may be 1 on a slightly bigger set as well.  

So, f r is something which is 1 here equal to 1 here and f r is of course 0 outside W, it is a 

compactly supported function. Alright. So, now it is clear that, so what is volume of E r? 

Well, volume of E r will be the sum of those things, some of the boxes. So, you look at these 

boxes, you add the volume of each of them. That is same as putting 1 here and calculating 

lambda f r that is the volume.  

But it is 1 f r is 1 on a slightly bigger set. So, there are more things you are picking up. So, 

this is obviously bigger than volume of E r. And g r is of course, greater than or equal to, g r 

is greater than or equal to f r. So, g r minus f r is positive. So, lambda of this is also positive 

and so, we have this inequality and the other one is clear because g r is 1 only on the union of 

sets coming from E 1 to E r after that it can be less than 1.  

So, volume of W will be much bigger than lambda of g r. So, this inequality is easy to see, 

but that is very crucial for us in proving that measure of W is same as the volume of W. So, 

let, now let r go to infinity. Let r go to infinity, well what will happen to volume of E sub r? 

Well, this will have to go to volume of W. Well, why is that? So, let us recall what E r is.  

E r is the union of all the 2 to the minus r boxes inside W, remember that W is a disjoint 

union of boxes from union of omega. So, this is because, so because W is a disjoint because 

any open set is a disjoint union of sets from union omega r or equal to say 1 to infinity, or 0 

to infinity.  

So, E r as r goes to infinity, so this may be E r and when you go to E r plus 1 you will pick up 

more smaller ones and so on, so forth. So, I can call this E r plus 1 and so on and so forth. So, 

you will fill up other places by taking r’s bigger and bigger, because the side length becomes 

smaller and smaller and W is finally the union of those things.  

So, this follows, so on the left hand side, so if you keep this in mind, on the left hand side this 

I know converges to volume of W. And lambda g r, so what happens to lambda g r? Well 

lambda g r is integral of g r dm by this is by the Riesz representation theorem. We have the 

measure m and g r is a compactly supported continuous function.  

So, it is measurable and it, and lambda is given by that measure m. So, this is the 

representation theorem and this converges to as r goes to infinity we will go to measure of W 



by monotone convergence theorem. Why is that? Because g r increases to the indicator 

function of W.  

Well let us see why, what is g r? g r is maximum of f 1, f 2, f r and so on. So, gr, so remember 

f 1 would be 1 on 1 boxes, f 2 will be 1 on half boxes and f 3 will be 1 or 2 to the minus 2 

boxes and so on and so forth. So, when I take g r, g r is the maximum of those things. So, it 

will be 1 on a large number of boxes completely inside W. And W is disjoint union of sets 

from this, so as r becomes bigger and bigger, g r becomes 1 on a larger and larger set, which 

finally becomes W finally converges to W and so g r will converge to the indicator of W.  

So, by monotone convergence theorem, lambda g r will converge to m W. So, from here we 

get, so, let me right here itself. So, we get volume of W is less than or equal to measure of W 

because the middle term goes to measure of less than equal to volume of W because the 

other, this side there is no dependence on r. So, this implies that volume of W is same as 

measure of W. So, for every open cell, every open k cell. But this is true for all cells, why?  
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Because any now, every k cell is a decreasing limit of open k cell, the decreasing limit of 

open k cells. So, what does that mean? For example, if I take for k equal to 1 dimension 1, if I 

take cell like this, let us say closed interval and this is of course, the intersection of, this is the 

intersection of, you look at intervals of this form.  

So, you can look at a minus 1 by n, b plus 1 by n, you take the open interval and then take the 

intersection, this is equal to the close interval a, b. But these are open k cells they are open 



intervals. Similarly, if I have one side open, well then what should I do? I will look at 

intersection n equal to 1 to infinity. Open at a minus 1 by n and open at b.  

So, these are open cells and intersection would be equal to close at a open at. So, if I know 

the measure of these things since is a decreasing sequence and the measures are finite, I can 

apply the theorem we know, if I have an decreasing sequence of sets m, E, n will converge to 

m E if E n converges to E or E n decreases to E provided one of them has finite measure.  

So, that you apply. So, hence we get volume of W, so that also of course will converge, 

volume of W will become, so it is like volume of a n, so let us look at this again, volume of a 

minus 1 by n to be plus 1 by n. This is nothing but b minus a plus 2 by n and of course that 

converges to b minus a whatever the interval is, which is the volume of that interval.  

So, we get volume of W equal to m W, well m W because m is a measure and if you have a 

decreasing sequence of sets you know it converges, so volume of W equal to m W for every k 

cell W. So, that proves one assertion. So, let me write down the second one, this we already 

know.  
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So, b the assertion b was the Sigma algebra M we got contains the Borel sigma algebra so 

this follows from Riesz representation statement of Riesz representation theorem itself. Also, 

a set belongs to M if and only if there exist a set A which is f sigma and a set B which is G 

delta such that A is contained in E contained in B and M of B minus A is 0. So, this we 

already know.  



So, this follows from this we know from the Riesz representation theorem and the 

consequences because R k is sigma compact, R k is sigma compact and any open set in R k is 

also sigma compact in R k is in R k is sigma compact. So, if we have the second assertion 

that any open set in R k is sigma compact, then the consequences of the Riesz representation 

theorem, which we looked at the final properties will also be true.  

So, this follows immediately from whatever we already know more importantly, it also 

follows that, it also follows that and m is regular. So, Riesz representation theorem gives you 

outer regularity and inner regularity for sets with finite measure, but that we have been able 

to change if the spaces sigma (comp) any open set in R k is sigma compact. So, we can use 

the second consequence of the Riesz representation theorem to say that any reasonable 

measure is regular.  

So, this directly follows from Riesz representation. So, let us stop here, we have just 

constructed the Lebesgue measure using the Riesz representation theorem by constructing a 

positive linear functional on cc of R k, what we have just proved tells us that it is actually the 

Sigma algebra we obtained from Riesz representations theorem is actually the Lebesgue 

sigma algebra, because it is the sets in the Sigma algebra differ from Borel sets by a set of 

measure 0. So, it is the completion and it equals the volume of each k cell. So, we have 

equality there.  

Now, we will look at other properties that it is translation invariant and we know that this is 

the unique, well we will also prove that this is the unique translation invariant measure on R k 

which gives finite measures to compact sets. And we will see how it in how the linear 

transformation affects the measure.  

So, remember a constant will come out that constant is actually the determinant which we 

will prove later on, right now we will prove that if you take a linear transformation Lebesgue 

set will be mapped into Lebesgue set and its measure is a constant times the measure of the 

original set. 


