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Measurable Functions 

So, we have seen invariants properties of the Lebesgue measure, we have seen finer 

properties of the measurable sets, we have proved that the Lebesgue sigma algebra is the 

completion of the Borel sigma algebra with respect to the Lebesgue measure. Now, we will 

continue with the measurable functions and see some more finer property.   

So, recall that we started the course with abstract integration of abstract measure theory and 

so on, where we had defined measurability of functions and we looked at integrals and so on. 

So, we will make some of those results finer using the extra structure on R n. So, that is what 

we will do first, and then we will compare Riemann integrals with Lebesgue integrals. Let us 

start.  
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So, measurable functions, so we know what they are. So, let us recall that, so on the side. So, 

if I had a triple X, F, mew, this was the abstract setting. X was a space, F was a sigma algebra 

and mew was a measure. We said real valued function or a complex valued function or 

sometimes it was minus infinity to infinity and so on. This is measurable if f inverse of a 

Borel set was in the sigma algebra we are interested in.  

So, this was a Borel set. So, B belong to Borel sigma algebra of R or Borel sigma algebra of 

C and so on, which was equivalent to saying f inverse of an open set is, open set belong to the 

sigma algebra that we will do. So, recall that and then that is the definition of measurable 

functions now, so if I have a function f taking values in the real line, the complex plane or it 

can remember it can take minus infinity and plus infinity and so on, that is allowed.  

Appropriately we change the sigma algebra then f is measurable, f is measurable if f inverse 

of a Borel set, f inverse of a Borel set belong to the Lebesgue sigma algebra of R n. So, this is 

the one you should keep in mind, because the right hand side has a Borel sigma algebra B 

Borel. So, whenever we pull back a Borel set we should get a Lebesgue set. So, that is what 

we mean by a measurable function.  

If we put a restrictive condition that f inverse B actually belongs to the Borel sigma algebra 

instead of the Lebesgue sigma algebra, then we say f is Borel measurable. So, f is said to be 

Borel measurable to again have f is defined on R n, let us say to R. If f inverse of a Borel set 

if it was of a Borel set B belongs to the Borel sigma algebra. But here it is a when we say 

measurable, so you can say Lebesgue measurable if you like, but I will simply say 

measurable.  



So, whenever we say miserable, the underlined sigma algebra is the Lebesgue sigma algebra, 

alright. So, that is one, a step function, so this is again using the structure of R n. In the 

general settings, when we looked at the triple X, F, mew, we had simple functions. We had 

simple functions, which makes sense here as well whether it is on R n or capital X does not 

matter. We have simple functions always.  

But step functions use the structure of R n just like on the real line, we know what is the 

functions are, these are linear combination of indicator functions of intervals. So, intervals 

will be replaced by cubes. So, a step function S is a measurable function, well it will be 

always miserable because we are looking at the cubes, S is a function which is given by a 

linear combination of finite linear combination of rectangles or cubes to finite where r k are 

rectangles.  

So, this is of course, measurable, r k are rectangles. So, in the real line this would be a usual 

measurable function, usual step function. So, if I look at the real line, a rectangle is a is an 

interval. So, you have one interval, you have you may have a bigger interval and so on. You 

fix a constant here, you fix another constant here that is your step function and this is simply 

the generalization to R n but that uses rectangles. So, this define only on R. So, these are of 

course simple function. 

A step function, so step function is a simple function as well. Step function is a simple 

function as well. But the converse is not true, because simple functions can be linear 

combination of arbitrary measurable sets, indicator of arbitrary measurable sets. The 

measurable sets need not be rectangles. When they are all rectangles, we say it is a step 

function. So, that is a smaller collection of measurable functions. So, this is one of the finer 

properties of measurable functions on R n because we have extra structure. 
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So, let f be a miserable function, so we call that whenever we say measurable, we mean 

Lebesgue measurable and when you pull back Borel sets you will have you will land in 

Lebesgue sigma algebra. So, that is what is meant by a measurable function, measurable on R 

n. It can take complex or real values, then there exists a sequence of step functions. We will 

call that psi k such that psi k converges to f, almost everywhere.  

So, remember we had some in the general setting in the abstract settings. We had simple 

functions converging to f almost everywhere. Those simple functions can be modified to get 

step functions right because this is the structure of R n in which we are using. So, proof of 

this is not very difficult. So, from the abstract theory, from the abstract theory, we know that 

there exists simple functions there exist s k converging to f, s k simple, this we know.  



Each s k is a linear combination of measurable sets. Well, maybe use L here this 2, where E L 

is a Lebesgue set. So, to show that any measurable can be approximated by step functions, it 

is enough to locate indicator of a measurable set and prove that it happens for such a set. So, 

enough to show that indicator of E, where E is an arbitrary measurable set can be 

approximated by approximated by step functions.  

So, this is where we will use the finer properties of Lebesgue sets, which we had proved 

earlier. So, if you can approximate indicator function of an arbitrary measurable set by step 

functions, then using the general theorem we can prove this for any arbitrary measurable 

function, so that part I will leave it to you.  
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So, we will just prove that any set E with any if I take an arbitrary E in L of R n, chi E can be 

approximated by step functions. Well how do we do this? We use the, we use one of the 

results, so let me recall those result recall that there exist. So, we may assume, before we go 

further, we may assume that measure of E is finite. So that is a that is easy exercise let me. 

Suppose measure of E is finite, infinite.  

Then I can cut it down by balls. so there exist E n such that measure of E n is finite and chi E 

n will converge to chi E almost everywhere. What do you do? You simply take E n to be E 

intersected with ball of radius n. So then it becomes bounded and it has finite measure. So, I 

can assume measure of E to be finite because that is enough because of the exercise. Now, 

once measure of is E finite, we know that it can be approximated by finitely many cubes.  
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So, by an earlier result with an earlier result where an earlier result for every epsilon positive 

that exist finitely many cubes Q j. So, let us say j equal to 1, 2, 3 et cetera, capital N such that 

E can be approximated by these cubes which is a same as saying the measure of E delta the 

symmetric difference, union j equal to 1 to N Q j is less than epsilon. So, this we had proved 

this was one of the finer properties of the measurable sets.  

We had proved if the measure of E is finite. So, these cubes, well, so let us say these cubes 

are like this, we do not how they look like so some cubes. So, this maybe one may be here 

and so on. So, this is how the picture looks like in let us say R 2. What you do is you extend 

the sides of the cubes, like this. So, you get a grid on R n, where we had the, so the cubes are 

here. So, let us say this is Q 1, this is Q 2 and this is Q 3 and so on.  



This we have these cubes you form a grid by extending the sides. So, consider the grid form 

by extending the sides of the cubes to j. So, then if you look at these grids, you see that you 

can you get one rectangle here, you get another rectangle here and so on. Here another 

rectangle, here another rectangle and such here another rectangle and so on. So, each of these 

cubes can be written as union of rectangles and they are almost disjoint.  

So, if you look at the picture this will be very clear, but let me write it down, we get that the 

union of Q j, j equal to one to N equal to union of j equal to 1, 2 some other number M, but 

finite R j tilde where R j tilde are almost disjoint rectangles. So, the R j tildes are here. So, 

this would be one of them, this would be another one, this is another one and so on. So, if you 

have cubes and you, if the cubes are already, almost disjoint than the extending the grid does 

not divide the cubes again.  

But the cubes may be overlapping. So, if I have 2 cubes like this and if I extend the grid, I am 

going to get something like this. So, that will give me this rectangle, this rectangle, this one, 

this one, this one, this one and so on. So, several of these rectangles, but almost disjoint and 

the original cubes are union of almost disjoint rectangles which we have just construct. 

Choose smaller rectangles, smaller rectangles R j contained in R j tilde, so when I say 

smaller, I do not mean very small.  

So, this would be let us say slightly smaller, slightly smaller rectangles R j contained in R j 

tilde such that the measure of E symmetric difference between R j,  j equal to 1 to M, this is 

result 2 epsilon that is possible. Because the union Q j is same as union R j tilde and union Q 

j give me an epsilon difference at the most. So, if I shrink the Q js or the R j tildes, then I will 

get R j such that maximum difference between them as of measure less than 2 epsilon that is 

possible.  
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So, hence, if you look at indicator of union R j, j equal to 1 to M, remember they are disjoint, 

they are almost disjoint. So, this is same as summation, if I have to always disjoint rectangles, 

let us say R 1 and R 2, the indicator of R 1 union R 2 is equal to indicator of R 1 plus 

indicator of R 2. Well, of course, if they are equal if R 1 and R 2 are disjoint, but they are not 

disjoint on this, this line, you add twice, but that line has measured 0. So, this is equality 

almost everywhere.  

So, the sum would be indicator of R j, j equal to 1 to M, but this may hold only almost 

everywhere, if they are truly disjoint of course, the sum is an equality, but otherwise they 

agree on the boundary but the boundaries have measured 0. So, this is something you should 

convince yourself. I had done these examples of computing the measure of lines and so on 

which gave me 0. Similarly, the boundary of the cubes will have measures 0.  

So, this tells me that, so using the equality one, the indicator of E will be equal to summation 

j equal to 1 to M indicator of R j except on a set whose measure is less than or equal to 2 

epsilon. So, given any epsilon, I can find rectangles, almost disjoint rectangles and the sum of 

their indicators like this. So, that the indicator function is same as the sum of the indicator 

function of rectangles except on a set whose measure is less than or equal to 2 epsilon.  

So, we use this to produce the convergence. So, remember we want to prove that there is a 

sequence of there is a sequence of step functions converging to the measurable function. So, 

we need to get step functions, what we have done is to approximate this up to 2 epsilon. Now, 

you run epsilon over 1 by k. So, hence for each k there exist step functions psi k such that, so 

now we have step function because we are taking in indicator of rectangles and the linear 

combinations of that.  

Such that the set F k where they differ. x is that f of x is not equal to psi k of x. So, remember 

f is the, we are assuming f to be the indicator function of E. Where they are not equal has 

measure small. So, measure is less than equal to let us say 2 to the minus k. So, because we 

can do this for every epsilon, we do this for epsilon equal to 2 to the minus k as k runs over 1, 

2, 3, N, so on .  
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Now, consider f to be the limsup of these F k’s limsup of F k, what are they, what is limsup 

of F k? You look at the intersection N equal to one to infinity union j equal to N to infinity F 

j. We look at the union from N space on nth place on words and take the intersection. This is 

called the limsup. Well exercise, this is pretty easy, measure of F is 0 it is easy because 

measure of union j equal to N to infinity of j this I know is less than 2 by subadditivity j equal 

to N to infinity, measure of F j but measure of F j is less than to 2 to the minus j.  

So, I have j equal to N to infinity, 2 to the minus j and those you can add by geometrics sum. 

So, this is like 1 by 2 to the N minus 1 or something like that. And then you are taking the 

intersection. So, intersection gives me a decreasing sequence of sets and the measure 

theoretic results you already know will tell me that there is convergence. So, if I call these 



sets A N then A N’s decrease to limsup of F j. So, measure of A N should decrease to 

measure of this.  

But measure of A N is bounded by 1 by 2 to the N minus one which goes to 0. So, that is 

easy. Well, so, this is the sets, what are F k’s? F k’s are the sets where it is whatever we want 

is not happening. But the limsup of that is 0. So, outside of, so this is you can complete the 

proof by observing that, by observing that the measure of F equal to 0 and on F compliment, 

on F compliment that is the compliment of the limsup set, we have just constructed.  

Convergence takes place, convergence take place, what is convergence? So, this psi k, which 

we have constructed psi k are step functions. Psi k which is not equal to the indicator function 

that set is F k, but we are outside F k when we look at F compliment, convergence takes place 

so psi k becomes f. So, f remember is chi as k goes to infinity, but f is such that the set capital 

F is has measure 0. So, this is same as seeing psi k converges to f almost everywhere. 

(Refer Slide Time: 23:48) 

 

So, any Lebesgue measurable function can be approximated by step function. So, 

approximating by simple functions is the general theory. Because of these properties we have 

step functions. So, that concludes the finer properties of Lebesgue measure, Lebesgue sets 

and Lebesgue functions. But now, so now we have the Lebesgue theory of integration, we 

want to compare it with Riemann integration. We want to say that Lebesgue integrable is 

more general than Riemann integral.   

In the sense that if the function is Riemann integral, then it is also Lebesgue integrable and 

the integrals are same. So, that calls for a comparison between Lebesgue integration and 



Riemann integration. So, let us start with the preliminaries and in the next session, we will 

complete the proof.  

 

 

 


