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Hi, so today, in today's lecture, we will actually start with the main subject at hand, namely, 

smooth manifolds.  
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So, the idea of a manifold, broadly speaking is, so we want to talk about spaces. So, I will be 

somewhat vague to begin with spaces which locally resemble open sets in Euclidean space. 

Well, this is the statement is not meant to be taken literally, but just as a motivating remark. 

Now, so for instance we would like to allow things like so, in dimension, there is a concept of 

a dimension of a manifold. 

In dimension 1, we can we allow, something like this, which is a circle which is slightly bent 

at one point or we can have just an open arc. It can even be disconnected. The union of these 

2 pieces, we would like to, what we do not want to allow is, so all this, this okay. We wanted 

to be okay. 

What we do not want is something like this or circle with a spike sticking out and this sort of 

8. So we do not want to allow these 2. And if one, this is just in dimension 1 and similar 

considerations apply in higher dimensions as well. For instance, in dimension 2, I would like 



a sphere which is flattened or just a regular sphere S2 or I will describe what this is later on 

and or just a plain, all these are fine.  
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But what is not fine is something like this. So if you take two spheres in R 3 and they touch at 

one point or if I take a sphere and put a line on it. So these we do not want. Now, there is an 

easy way of sort of picking out the ones we want from the both in dimension 1 or any 

dimension for that matter. 

Namely, if you just look at it closely, one notices that in the first 3 examples, whatever point 

one takes, even if I take a point here for instance, close to that point, the space I have just 

looks like a bent arc. So, we can define a bijection, continuous bijection from this arc into an 

open interval inside the real line and same thing can be done for the other two as well.  



But in this other two examples, we want for instance, in the first example, if one looks at the 

point of where these 2 where the figure 8, the two circles meet. If I stay close to that point, 

stay close, meaning, so I will be picking out something like this across. Well across cannot 

be, there is no continuous bijection from a cross to an open interval, it is something more than 

a continuous bijection that we need. Namely, we demand that the universe should also be 

continuous.  

I will formally define that. But for the moment, let us just think of it as a way of deforming 

this to in open interval. In a bijective manner, this cannot be deformed to this, there is no way 

of getting rid of the cross, the point of intersection. Formally a proof can be easily given just 

by saying, by looking at, by considering the fact that the interval is connected, rather, if I that 

is, that will not help us much. But rather if I remove a point here, this problematic point from 

this space, I will get 4 pieces. 

More formally, I will get 4 connected components. Now, this point has to go somewhere on 

the open interval, if there is such a map. And if I remove this point here, it would correspond 

to removing some point here. But I will be just left with 2 pieces, 2 connected components. 

And basically this more or less gives a proof that this cannot be homeomorphic to an open 

interval. And similar argument will apply for this space as well. So I would not go into that.  

But now, the thing is, even here in dimension 2, the same considerations apply. So, how to 

formally define spaces which have this property that if you stay close to that point, we get a 

neighborhood, which is like an open subset of R n. So essentially, we use the concept of a 

homeomorphism. 

But even before that the, I need to start with a concept of a space. Now, generally the most 

general notion of a space that one encounters in a first course is a topological space. So, I will 

assume that, it is one knows the definition of a topological space. Though, in this specific 

matter, one does not actually need that it turns out that metric spaces are enough. So, let me 

give the first the topological definition and then make a remark about metric spaces. 
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So definition, so as I said, I need to first define the concept of a homomorphism. So let x and 

y be topological spaces, a homeomorphism f from x to y is a continuous bijective map such 

that f inverse from y to x is continuous. So, recall that we had talked about the few 

morphisms earlier between open subsets of R n. So, a diffeomorphism, for a diffeomorphism 

we had demanded that f itself is C 1 bijective and f inverse is also C 1. Of course, C 1 would 

imply continuity.  

So, a diffeomorphism provides an example of a homomorphism between open sets. But that 

is a very restrictive type of homeomorphism. So, in the definition of a homeomorphism, there 

are no considerations of differentiability and so on. Now, again, one should be, there are 

examples where a map can be continuous bijective but inverse may not be continuous. So, 



one has to impose this condition. However, I do not want to dwell too much on this because 

soon we will be moving in talking about differentiable stuff. 

So, let us just keep, take this definition and then proceed to define the notion of a topological 

manifold. A topological manifold of dimension n is a Hausdorff, second countable 

topological space X such that, now this Hausdorff and second countable technical 

assumptions but the important thing is what I am about to write down now, such that every 

point P in X has a neighborhood U which is homeomorphic to an open subset of R n. This 

precisely, so this property, the fact the property that it has a neighborhood which is 

homeomorphic to an open subset of R n is usually referred to us. The, usually say that the 

space X is locally Euclidean.  

Now, this as I said, one has to put these conditions hausdorff and second countable. So, let 

me quickly tell you what second countable is the same thing as saying X has a countable 

basis so for its topology. As I said, it is a theorem that in fact, if one starts with a topological 

manifold. In fact, one can restrict ourselves. One can restrict oneself to metric spaces because 

of the following fact. Any hausdorff, second countable locally Euclidean, again I should 

emphasize that locally Euclidean just means that every point has a neighborhood U which is 

homeomorphic to an open subset of R n. 

Second countable locally Euclidean topological space is metrizable. In other words, let us 

give it a name X. In other words, there is a distance function d on X such that the topology 

induced by d. Every time one has a distance function it induces say topology the metric 

topology namely the distance function defines open balls in X and use that as a basis and you 

will get a topology. Note that the topology induce such that the topology induced by d 

coincides topology.  

So, we started with a topological space. So, there was a topology to begin with, what we are 

saying is we can put a distance function such that the topology induced by the distance 

function is the same as the original topology. So, in short because of this fact, I can just write 

and notice that the moment you have a metric space, metrics the topologies automatically 

Hausdorff. It turns out that second countable as the same thing as separable, so for a metric 

space.  
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So if one is not too comfortable with topological spaces, alternate definition of one can work 

with the following alternate definition of topological manifold of dimension n. So I do not, I 

no longer I would I start with the metric space, X a metric space. I no longer have to specify 

Hausdorff, it is a metric space. So actually here I will just add X, a separable metric space. In 

other words, it has accountable dense subset, a separable metric space which is locally 

Euclidean of dimension. 

So, this is equivalent to the original result because of the fact that I mentioned earlier. 

However, even though topological manifolds are interesting in their own right and they are 

studied extensively in geometric topology. What we are interested in as we would like to do 

calculus on manifolds, so in other words, we would like to talk about differentiable functions, 

vector fields, flows and so on tangent spaces, et cetera.  

So we need the notion of a, notion of differentiability. That does not come with just this. So, I 

will make another definition, which at first sight is not clear why it is do the things are 

defined like this, but I will explain shortly, the need for this definition. So, I will say that M is 

a smooth or C infinity manifold of dimension n, just instead of writing manifold of dimension 

n one normally writes just n-manifold. M is a smooth or C infinity manifold, I will use the 

word smooth and C infinity interchangeably.  

In my preliminaries lectures, I was focusing mainly on C1 functions. Hence forth, when I say 

smooth I mean C infinity, infinitely differentiable dimension n if M is a topological manifold 

such that, now in order to state what is going to come here, I need to make a small definition 



here. So when I have this locally Euclidean of dimension n, I have a chart and so I have a 

open set. So, I need to make one more definition, so I will try to sneak it in here. The in the 

definition of local Euclidian I have this open set U and a homeomorphism phi from U to 

some open subset of R n.  

So, this U is in X and phi is a homeomorphism. So, this pair is called a chart and if a 

collection of charts U alpha, phi alpha index by some alpha which covers X is called an 

Atlas. So, this notion of Atlas is not that important for us or rather what the, however, we will 

be using charts very frequently. So, a chart is just a open set and a homeomorphism on to an 

open subset of R n.  

And a collection of charts which covers X, the covers X meaning that every point should be 

in one of these charts. Such a collection is called an Atlas. Now with these, these 2 

definitions, what I want is that such that if every time 2 charts intersect, I want something to 

happen. If U alpha, phi alpha and U beta, phi beta are charts with U alpha intersection U beta 

not empty. So the picture is like this. I will continue on the next page. 
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So, I have well, so this is U alpha, this is U beta and they have some intersection. Well, I also 

have this homeomorphism and another homeomorphism here. Now, this homeomorphism phi 

alpha will map U alpha to some open subset of here, these are in R n. Now let us look at this 

intersection. This is U alpha intersection U beta, under this homeomorphism phi alpha, this 

gets mapped to some other (open), notice that phi is, phi alpha is a homeomorphism. 



So, its continuous and continuous inverse, so which, that implies that phi alpha takes open 

subsets in X rather open subsets of U alpha to open subsets of R n. So, in particular, this goes 

to some open subset, which is phi alpha, U alpha intersection U beta that is this part. So, let 

us just, that is this and this goes to another open set, the same thing goes to another open set 

under phi beta. Of course, this is phi beta of U alpha intersection U beta. So, I have 2 open 

subsets of R n now, phi alpha, U alpha this one as well as this as well as this. 

And what I can do is, I can start with a point inside this open set here. I can start with some 

point here and apply phi alpha inverse, I will end up with something here then apply phi beta 

then I end up with the corresponding point in this. So let us write that down. So, phi alpha 

inverse composed with phi beta will map is we can regard as a map, U alpha intersection beta 

mapping to phi beta, U alpha intersection U beta. The point is that these are both now both in 

R n, open subsets of R n.  
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I still have not defined the condition is left, I said such that something happens. Well, the 

condition is that this map, phi alpha inverse phi beta is C infinity. Notice that it does not 

make sense to say that phi alpha itself is C infinity or phi beta is C infinity because the notion 

of a differentiable function make sense only when the domain is in open subset of R n. The 

domain of phi alpha, domain is an open subset of R n and the target is some Euclidean space. 

But phi alpha is, its domain is an open subset of some metric space or topological space.  

Similarly, phi beta, so to talk about differentiability of phi alpha, phi beta, in our usual sense, 

is a well, it does not quite make sense. But, this phi alpha inverse phi beta is a map from 

between open subsets. And one, it is perfectly fine to talk about C infinity. This has a name, 

so this is called a transition function. So, these transition functions they are defined when 

whenever you have 2 charts, which have a non-empty intersection, you get a transition 

function.  

And everything hinges, so the on these, the whole notion of a smooth manifold is crucially 

involves, I mean this transition functions. Now, why does one bother to define it in such a 

complicated way the notion of a smooth manifold? But before that, let me give some 

examples of smooth manifolds. A trivial example is M is just an open subset of R n. In this 

case, so remember that to show that something is a smooth manifold what we have to show? 

We have to show two things, one as, well actually three things. 

One is, it is a separable metric space is one thing, either that or Hausdorff second countable. 

Those are usually quite straight forward to check. The one non-trivial thing is locally 

Euclidean. That is the second condition. The third thing is that this transition functions are C 

infinity. So, in fact, let me just before I start with the examples, let me just write down that 

what we have to show? Suppose we are given some set M is a smooth n-manifold, we have to 

show, we have to check the following. 

First one, if you do not have a metric, natural metric, if M is given as a topological space, we 

have to show that it is Hausdorff and second countable or if it comes with a metric, we have 

to show that it is separable, it has a countable (()) (den) subset. Second thing is M is a 

topological, M is locally Euclidean, M is locally Euclidean of dimension n. This is, the 

second step is the main step.  

So what this means, again, to remind ourselves what this means, we have to start with some 

point in any point in M and we have to put it inside an open set and construct a 



homeomorphism of that open set to an open subset of R n. Well, that is not enough, then once 

we do that, we get a whole bunch of charts and an Atlas. Then we have to check that 

transition functions are C infinity. So these are all independent steps. One has to verify. So, 

we will stop here and I will begin with examples next time. So we will check that these 3 

conditions are satisfied in some simple cases. Thank you.  


