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Hello and welcome to the 59th lecture in the series. Let us continue our discussion of 

differential forms and local coordinates. We are talking about actually we just talking about 

open sets and R n and we saw that here we have a simple way of checking smoothness of a 

differential k form defined on an open set in R n. The main observation is that we have a 

natural basis for the space of alternating k tensors. And in terms of the basis, smoothness 

amounts to saying that the coefficient functions are smooth and we are told one part of the 

statement now, let us prove the other part. 
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Now, assume that C I belongs to C infinity U for all increasing strictly increasing multi 

indices I. So, I would like to say that and then this is smooth. So, now I have to start with 

arbitrary vector fields, you look at this function P going to Omega p X 1 p, X k p. Now the 

what we can do is, we can write each of the X i as in terms of the standard basis. We have x 1 

equals a 1 1, del by del x 1 plus a 1 and del by del x 1, etc. X k equals a k 1 del by del x 1 a k 

1 del by del x 1, where the and we know that the smoothness of this excise amounts to the 

smoothness of this functions a i j. So, these coefficient functions belong to so I varying 

between 1 and k, j varying between 1 and n. 
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So, we have this smooth coefficient functions and then just use multi linearity. So, this 

function let us call it so this is called g of p. So, then g of p is equal to Omega p, instead of x 

1, I just write a 1 i del by del x I, etc, a k i del by del x i. Now, strictly speaking, I should not 

use the same index i in different sums, but just for notational simplicity, let us just keep it like 

this. Now, the thing is that this using multi-linearity what one gets us this will be summation 

over so in fact now I will be forced to use different indices. So, here I will have to say i 1 i 1 i 

k i k, where all this i 1 runs from 1 to n, i k also runs from 1 to n. 

Now, so using multi linearity, one gets a 1 i 1 a k i k, product of all this coefficient functions, 

then Omega p, so here since I have taken p, so I have to put a p here as well. So this is P, this 

is p, so a 1 of p and p and here as well p. So, I will end up with this product and then Omega 

p del by del x i 1 at p del by del x i q at p. Now, so these are by assumption these coefficient 

functions coming from the vector fields are smooth.  

So therefore, the product here this entire thing is smooth, so one just has to check that these 

things are smooth. So, enough to check P going to Omega p del by del x i 1 p, del by del x i k 

at p is smooth. Again one is left with the similar thing so, here just like in the previous step 

previous calculation, you write Omega p as C I dx I again at p and then this thing is also at p, 

so I will not write at P, notation becomes a bit messy. 

So, but if I plug in this coordinate vector fields, del by del x i k at p as in the previous step, I 

will end up evaluating dx I on all these things. Maybe let me just say just to not keep track of 

the indices. So, let me use j here as the summation multi index, so this will be, and if we call I 

equals i 1, i k, then dx j evaluated on these factors will be 0 unless I equals j. So, then 

essentially only one term will survive and that term will be C I, C I at p. So, these are smooth 

so this is just C I p and by assumption, we are given that C I are all smooth. Therefore, this 

thing here what we wanted to check is smooth, so this is just C I and one is done. 
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So, that takes care of open sets in R n, and in the manifold setting, let U, Phi be a chart on M, 

again so we have just like we had a basis for the tangent space, we had given a chart we get n 

linearly independent vector fields defined on U so it is dimension of the tangent space is also 

n, these n vector fields form a basis. We call this the coordinate vector fields and we get 

similarly we can do the same thing for forms. We have a basis for each T p M P U namely 

htp and star, the dual space. So d x 1, dx n and where just like for vector fields when I write d 

x 1 what I mean is, so this is u and this is v, so this is mapping to something in R n. 

Here, I have d x 1 on R n and what I want what I am doing is, I am just pulling these back to, 

so Phi upper star d x 1 etc. So this notation, I put it in quotation marks, this means actually 

just the pullback of the corresponding d x 1 back to the. And since Phi since Phi 

diffeomorphism of from, so this is what we have been calling U 1 U to U 1, the derivative, 

the pullback map, by the way, Phi upper star here, I should clarify this notation. It is slightly 

misleading notation but this is standard when one Phi upper star. What one means is the Phi? 

So actually Phi is just a map of open sets. The derivative is a map of vector spaces, and we 

are using the derivative to pull back so it is actually d Phi star of d x 1. 

So here also I should put quotation marks, Phi upper star is nothing but d Phi upper star, but 

one normally does not write d Phi upper star, one just writes Phi star. Since Phi is a 

diffeomorphism from U to U 1. We know that the derivative is an isomorphism from T p U to 

T Phi of p U 1 is an isomorphism hence, whenever we have an isomorphism of vector spaces, 

the pullback maps induce isomorphisms of corresponding between corresponding spaces of 



multi linear forms. So, d Phi upper star is in A k T Phi of p U 1 to A k T p U is an 

isomorphism for all k. 

So therefore, the point is that tr in particular for one forms. If I start with the basis for the dual 

space of the tenant space in R n and I pull it back via d Phi, I get a basis corresponding basis 

for each T p and star. And in fact we can do this for since this map is here is an isomorphism, 

we can also conclude more generally, we have a basis for A k T p U namely Phi upper star 

where Phi upper star again, I mean d Phi upper star, Phi upper star of dx I, which we write as.  

So these things again I just write as just d X I. So in short, we use the same notation, even 

though we are on the manifold, we use the same notation as if we were, as long as we are 

inside the chart we will use the same notation as if we are on open subsets of R n.  
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So everywhere however, if you want to know what it literally means, there is this chart map 

involved which is omitted in this standard notation and you just write d X I. So, if we carry 

over this discussion whatever we proved for open subsets of R n, then at least we can see that 

we have the following proposition Omega and Omega k m is smooth if and only if, of course 

this notation and this statement is kind of odd because when I write capital Omega k m, 

automatically I am assuming that Omega is smooth. 

 



So, what I want to say is that any assignment from k to this thing, any assignment P 2 alpha p 

in L k T P M or what we are talking about is A k T P M is smooth if and only if something 

happens and that something is exactly what we had for open subsets of R n. 
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If and only if any chart U Phi C I are smooth where Omega is C I dx I. Omega restricted to 

you is C I d X I. So, I will not prove this and I mean the prove I have already, there is nothing 

much to prove. Essentially, we have proved the statement for open subsets of R n. And what 

we have to observe is that when we have a diffeomorphism, the smooth forms will go to 

smooth forms.  

So, you pull back essentially, if you start with the smooth form on the manifold restricted to 

the open set, then you pull it back to U 1 using Phi inverse which goes in the opposite 

direction, and then this expansion of Omega in this form, so you will be applying Phi inverse 

d Phi inverse star to everything here. And the way d X I was defined when you apply Phi 

inverse star, actually you will get the actual d X I on R n and then you will end up concluding 

C I composed with Phi inverse is smooth and so on and the other way also is similar. So, this 

is a useful criterion to have. 
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And then we also had these operations tensor and wedge products, Omega alpha belongs to 

let us say let us just stick to wedge products right now, I will have no occasion to talk about 

tensor products anymore, for us tensor products, wedge product. So, if I start with two k 

forms Omega k M, then we define Omega wedge alpha, this is a new, this is a, actually I do 

not need them to be the same Omega n this thing, Alpha and Omega L of m. So, this is k plus 

L of M by so, I have to say what its value is what I get at a specific point. So, I just defined 

this to be Omega at p wedge Alpha at p. 

So, Omega at p will be a alternating k form on T p M and Alpha t will be an alternating L 

form, so I can take the wedge product. It is easy to check that Omega wedge alpha is smooth. 

Now, this can be done either using the local using a coordinate chart and expressing Omega 

and alpha in terms of the charts or one can directly go to the definition and use vector fields 

as well. Both ways will show that this is smooth.  

So one has this, now the other thing is that we have the pullback operation, let f be a smooth 

map between manifolds. If Omega belongs to Omega k N, we get f star Omega in Omega k 

M. And again, what one is doing is, one is using the derivative to pull it back from here to 

here. 
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Now, at this point I have to be, there is one small subtlety which is the smoothness of f star 

Omega. This subtlety arises because of the following reason; suppose I want to go to the go 

by the definition of smoothness, then I will have to plug in k vector fields on M. So each of 

these X i are vector fields on M. Well, this by definition, first of all let us write down what 

this really means, it is d f upper star Omega acting on X 1, X k and by definition, this is 

supposed to be or Omega d f acting on X 1, d f acting on X k. Now here comes the problem 

that we know that Omega is a smooth form on n.  

So if you plug in k vector fields, I should get something smooth a smooth function on n. So 

actually, let us see let us take a point p here, p equal to f star p X 1 p, etc, X k at p. So, this 

would be by definition d, f of p and I would be pulling back the form at f of p X 1 of p X k at 

p and this is Omega at f of P, d f of p X 1 p, well, let me just write it like this at p. So, as p 

changes on M, I would like to say that now I know that Omega of when the input to Omega 

or smooth vector fields on n, I know I get something smooth on n.  

However, the problem is as we have seen before, X 1 and X 2 all the way up to X k are vector 

fields on M, but when I do of those vector fields, I may not get actual vector fields on N. 

After all, the extreme case of f being a constant map will show what can go wrong.  So in 

short, the input here on this right hand side for Omega are not actually vector fields on the 

target. So, we cannot directly use the definition of smoothness of Omega.  



But we cannot use smoothness of Omega since d f p X 1 of p, etc, d f p X k at p may not be 

not be vector fields on n. For each p of course I get a tangent vector and to some tangent 

space on n, but I may not get a vector field. So, the problem is easily overcome just by 

working with local coordinates local coordinates to see the smoothness of f star Omega. So 

let us stop here. In my next lecture, I will talk a bit more about this. Thank you  

 

 


